This Author published in this journals
All Journal agriTECH
Budi Rahardjo
Jurusan Teknik Pertanian, Fakultas Teknologi Pertanian, Universitas Gadjah Mada, Jl. Flora No.1, Bulaksumur, Yogyakarta 55281

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Pemodelan pada Proses Pengeringan Mekanis Tepung Kasava dengan Menggunakan Pneumatic Dryer: Hubungan Fineness Modulus dengan Variabel Proses Pengeringan Yus Witdarko; Nursigit Bintoro; Bandul Suratmo; Budi Rahardjo
agriTECH Vol 35, No 4 (2015)
Publisher : Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (642.622 KB) | DOI: 10.22146/agritech.9333

Abstract

One of the drying methods, which are applied in the industry of flour production, is that pneumatic drying. A wide variety of the variables that are from both of the characteristics of the dried material and drying process condition greatly affect the quality of drying result. Fineness Modulus (FM) and average diameter of flour are important variables in determining the quality of the flour. The objectives of this research was to formulatea mathematical relationship between various pneumatic drying process variables with the fineness modulus of the materials of cassava flour by applying dimensional analysis. In order to realize this goal, pneumatic drying equipment has been designed and tested with a wide variety of treatments such as the input capacity, drying air velocity, particle’s flour diameter, and temperature of air dryer as well.ABSTRAKMetode pengeringan yang diterapkan dalam industri pembuatan tepung salah satunya adalah pneumatic drying. Berbagai macam variabel baik dari sifat-sifat bahan yang dikeringkan maupun kondisi proses pengeringan sangat mempengaruhi kualitas hasil pengeringan. Fineness Modulus (FM) dan diameter tepung rata-rata merupakan variabel-variabel yang penting dalam penentuan kualitas dari tepung. Tujuan dari penelitian ini adalah untuk mencari hubungan matematis antara FM dengan variabel-variabel kondisi proses pengeringan pneumatik. Untuk dapat mewujudkan tujuan tersebut telah dirancang peralatan pneumatic drying dan dilakukan pengujian dengan berbagai macam variasi perlakuan seperti kapasitas input, kecepatan udara pengering, diameter partikel tepung, dan temperatur udara pengering.
Model Jaringan Syaraf Tiruan untuk Memprediksi Parameter Kualitas Tomat Berdasarkan Parameter Warna RGB Rudiati Evi Masithoh; Budi Rahardjo; Lilik Sutiarso; Agus Hardjoko
agriTECH Vol 32, No 4 (2012)
Publisher : Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (184.081 KB) | DOI: 10.22146/agritech.9585

Abstract

Artificial neural networks (ANN) was used to predict the quality parameters of tomato, i.e. Brix, citric acid, total carotene, and vitamin C. ANN was developed from Red Green Blue (RGB) image data of tomatoes measured using a developed computer vision system (CVS). Qualitative analysis of tomato compositions were obtained from laboratory experiments. ANN model was based on a feedforward backpropagation network with different training functions, namely gradient descent (traingd), gradient descent with the resilient backpropagation (trainrp), Broyden, Fletcher, Goldfrab and Shanno (BFGS) quasi-Newton (trainbfg), as well as Levenberg Marquardt (trainlm).  The network structure using logsig and linear (purelin) activation function at the hidden and output layer, respectively, and using  the trainlm as a training function resulted in the best performance. Correlation coefficient (r) of training and validation process were 0.97 - 0.99 and 0.92 - 0.99, whereas the MAE values ranged from 0.01 to 0.23 and 0.03 to 0.59, respectively.ABSTRAKJaringan syaraf tiruan (JST) digunakan untuk memprediksi parameter kualitas tomat, yaitu Brix, asam sitrat, karoten total, dan vitamin C. JST dikembangkan dari data Red Green Blue (RGB)  citra tomat yang diukur menggunakan computer vision system. Data kualitas tomat diperoleh dari analisis di laboratorium. Struktur model JST didasarkan pada jaringan feedforward backpropagation dengan berbagai fungsi pelatihan, yaitu gradient descent (traingd), gradient descent dengan resilient backpropagation (trainrp), Broyden, Fletcher, Goldfrab dan Shanno (BFGS) quasi-Newton (trainbfg), serta Levenberg Marquardt (trainlm). Fungsi pelatihan yang terbaik adalah menggunakan trainlm, serta pada struktur jaringan digunakan fungsi aktivasi logsig pada lapisan tersembunyi dan linier (purelin) pada lapisan keluaran. dengan 1000 epoch. Nilai koefisien korelasi (r) pada tahap pelatihan dan validasi secara berturut-turut adalah 0.97 - 0.99 dan 0.92 - 0.99; sedangkan nilai MAE berkisar antara 0.01-0.23 dan 0.03-0.59.