Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : Indonesian Journal of Biotechnology

Succession of Actinomycetes During Composting Proccess of Dairy-Farm Waste Investigated by Culture-Dependent and Independent Approaches Mukhlissul Faatih; Jaka Widada; N. Ngadiman
Indonesian Journal of Biotechnology Vol 13, No 2 (2008)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (324.251 KB) | DOI: 10.22146/ijbiotech.7799

Abstract

Mesophilic, thermophilic, and maturation phases were recognized in composting proccess. Temperaturechanges influence the microbial communities in compost within composting proccess. Actinomycetes account for alarger part of compost microbial population. The aim of this research was to study succession of actinomycetescommunity during composting of dairy-farm waste investigated by culture-dependent and independentapproaches.In culture-independent method, the succession of actinomycetes community was analyzed by nestedpolymerasechain reaction of ribosomal intergenic spacer (nested-PCR RISA) using spesific primer F243 and primerR23S followed by a second PCR using primers F968 and R23S. In culture-dependent method actinomycetes fromcompost were isolated on selective media, starch-nitrate medium and humic-acid + vitamins medium. DNA ofactinomycetes was extracted and amplified by repetitive sequence-based PCR (rep-PCR) using primer BOXA1R. Thebanding patterns were used to generate dendrograms by UPGMA clustering with NTSYS program. Microcosmcontaining sterile rice-straw and water which is inoculated with each actinomycetes isolates was used for examiningthe ability of each isolate in rice-straw degradation.The experiment results showed that succession of both bacteria and actinomycetes was occured withincomposting proccess of dairy-farm waste. Analysed by culture-independent method revealed that the highestcommunity of compost’s bacteria was on mesophilic, thermophilic, and maturation phases, respectively. WhereasPCR-nested RISA resulted the highest population of actinomycetes was on thermophilic, maturation, and mesophilicphases, respectively. By culture-dependent method was obtained 29 actinomycetes isolates from mesophilic phase,23 isolates from thermophilic phase, and 19 isolates from maturation phase. Genetic diversity analysis of the obtainedisolates showed the presence of phylogenetic grouping on each phase of composting proccess. This result illustratedthe occurance of succession of actinomycetes community in compost. The ability of each isolates in rice-strawdegradation was different, and SnT9 isolate was found to be a promising rice-straw degrader.Keywords: succession, actinomycetes, composting, nested-PCR RISA, rep-PCR
Diversity of Actinomycetes at Several Forest Types in Wanagama I Yogyakarta and Their Potency as a Producer of Antifungal Compound Reni Nurjasmi; Jaka Widada; N. Ngadiman
Indonesian Journal of Biotechnology Vol 14, No 2 (2009)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (332.685 KB) | DOI: 10.22146/ijbiotech.7813

Abstract

Actinomycetes are bacterial groups that produce many secondary metabolites, which different biological activities, such as antifungi, antibacteria, antivirus, antitumor, etc. Actinomycetes are widely distributed in soil and their diversity is influenced by type of forest. The aim of this study is to investigate diversity of actinomycetes in several forest types of Wanagama I forest in Yogyakarta and their potency as a producer of antifungal compound. Soil samples under the forest of Tectona grandis, Swietenia macrophylla King, Bamboosa vulgaris, Melaleuca leucadendron, and Gliricidia maculata were used as sources of soil bacteria. Bacteria and actinomycetes communities were analyzed through culture-independent approach by RISA and nested-PCR RISA using actinomycetes spesific primer (F243), respectively. Through culture-dependent approach, isolated actinomycetes diversity were analyzed by identification of morphology (colony and cell), genetic (BOX element by rep-PCR), and secondary metabolites (thin layer chromatography). In addition, isolates were assayed for their antifungal activity against Saccharomyces cerevisae, Candida albicans, Fusarium oxysporum and Aspergillus flavus. The presence of Polyketide Synthase-I (PKS-I) and NonRibosomal Peptide Synthetase (NRPS) genes were amplified by PCR to study their correlation with antifungal activity of the actinomycete isolates. The results showed that types of forest influence diversity of rhizobacteria especially actinomycetes. According to culture-independent approach, relatively, com-</div><div>munity of rhizobacteria from the highest were soil under the forest of B. vulgaris, G. maculata, T. grandis, S.macrophylla King, and M. leucadendron, respectively. Meanwhile, community of actinomycetes from the highest were soil under the forest of G. maculata, B. vulgaris, M. leucadendron, S. macrophylla King, and T. grandis, respec- tively. Fourty-three morphologically different isolates were found by using culture-dependent approach consisting of 17 isolates were found in soil under the forest of M. leucadedron, each of 9 isolates in G. maculata and T. grandis, 6 isolates in S. macrophylla King. and 2 isolates in B. vulgaris. More diversity of secondary metabolites were observed in soil actinomycetes under the forest of M. leucadendron. Of the 43 isolates, 100% were active against S.cerevisae, 37.20% against C. albicans, 95.30% against F. oxysporum, and 83.70% against A. flavus. Antifungal activity of actinomycete isolates did not always have correlation with the presence of PKS-I and NRPS.
Purification and Characterization of Protease From Bacillus sp. TBRSN- 1 Sebastian Margino; J. Jumi&#039;ati; N. Ngadiman
Indonesian Journal of Biotechnology Vol 18, No 2 (2013)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (319.697 KB) | DOI: 10.22146/ijbiotech.7878

Abstract

Potato Cyst Nematode (PCN), Globodera rostochiensis, is one of the important potato’s pests and causedeconomic looses up to 70% in the several centrals of potato plantations in Indonesia. PCN’s shell componentof egg shell containing chitin (inner layer) and viteline/ protein (outer layer). The purpose of this researchwas to purify of protease Bacillus sp. TBRSN-1, isolate from tomato’s rhizosfer in Yogyakarta province. Thepurifi ed protease could be used for cutting the life cycle of PCN. Results showed that Bacillus sp. TBRSN-1could produce extracellular protease and purifi cation using DEAE-cellulose ion-exchange chromatographyand Sephacryl S-300 gel fi ltration chromatography resulted in specifi c activity 4.31 fold and 1.68% recovery.Analysing using SDS-PAGE 12.5% and molecular weight 48.1 kDa. Km and Vmax values of the protease forcasein substrate were 7.83 mg/ml and 4.03 μg/h, respectively. The optimum activity at the temperature30oC and pH 7.0. Keywords : protease, purifi cation, indigenous Bacillus sp. TBRSN-1