Claim Missing Document
Check
Articles

Found 2 Documents
Search

POTENTIAL FISHING GROUND MAPPING BASED ON GIS HOTSPOT MODEL AND TIME SERIES ANALYSIS: A CASE STUDY ON LIFT NET FISHERIES IN SERIBU ISLAND Andi Alamsyah Rivai; Vincentius P. Siregar; Syamsul B. Agus; Hiroki Yasuma
Jurnal Ilmu dan Teknologi Kelautan Tropis Vol. 9 No. 1 (2017): Elektronik Jurnal Ilmu dan Teknologi Kelautan Tropis
Publisher : Department of Marine Science and Technology, Faculty of Fisheries and Marine Science, IPB University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (419.159 KB) | DOI: 10.29244/jitkt.v9i1.17948

Abstract

Information on the spatial and temporal of fishing activity can optimize a fisheries management and increase their economical and biological benefit. For effective management and good understanding of fishing activities, information about fishing ground is crucial. In this study, we aimed to analyze the spatio-temporal of lift net fisheries in Kepulauan Seribu by analyzing their fishing season, investigating their hotspot of fishing ground using GIS-based hotspot model, and mapping the potential fishing ground of each target species. We found that anchovy and scad could be caught throughtout the year, while sardine and squid had high fishing season in west monsoon. Hotspot of fishing ground of lift net fisheries in Kepulauan Seribu waters generally was concentrated around Lancang Island and in southern part of Kotok Island. Potential fishing ground for sardines was located in around Lancang Island on west monsoon. Squids were highly distributed around Lancang Island in December to January and around Lancang and Rambut Islands in November. Anchovy and scad had more potential fishing ground in around Kepulauan Seribu waters.  Keywords: fishing ground, lift net, hotspot, fishing season 
KLASIFIKASI MANGROVE BERBASIS OBJEK DAN PIKSEL MENGGUNAKAN CITRA SENTINEL-2B DI SUNGAI LIONG, BENGKALIS, PROVINSI RIAU . Rosmasita; Vincentius P. Siregar; Syamsul B. Agus
Jurnal Ilmu dan Teknologi Kelautan Tropis Vol. 10 No. 3 (2018): Jurnal Ilmu dan Teknologi Kelautan Tropis
Publisher : Department of Marine Science and Technology, Faculty of Fisheries and Marine Science, IPB University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1885.166 KB) | DOI: 10.29244/jitkt.v10i3.22182

Abstract

ABSTRAK Penelitian pemetaan mangrove di Sungai Liong, Bengkalis Provinsi Riau sangat terbatas, sehingga ketersediaan data spasial di wilayah ini masih sangat terbatas. Pemanfaatan citra satelit dapat dijadikan alternatif dalam menyediakan data spasial secara efektif dan efesien. Penelitian ini bertujuan untuk memetakan mangrove sampai tingkat komunitas menggunakan citra sentinel 2B dengan metode klasifikasi berbasis objek/OBIA dan membandingkannya dengan teknik klasifikasi berbasis piksel. Algoritma yang digunakan pada penelitian ini adalah support vector machine (SVM). Pengembangan skema klasifikasi mangrove pada penelitian ini di bagi menjadi 2 level, yaitu kelas penutup lahan di sekitar mangrove dan kelas komunitas mangrove. Data yang digunakan untuk klasifikasi kelas penutup lahan adalah data foto udara yang diperoleh dengan menggunakan pesawat tanpa awak (unmanned aerial vehicle/UAV) dan untuk klasifikasi komunitas menggunakan data transek tahun 2013. Akurasi keseluruhan  (OA) yang diperoleh untuk klafikasi penutup lahan mangrove dengan kedua teknik klasifikasi berbasis objek dan piksel berturut-turut adalah 78,7% dan 70,9%. Sedangkan akurasi keseluruhan (OA) untuk klasifikasi komunitas mangrove berbasis objek dan piksel berutru-turut yaitu 76,6% dan 75,0%. Sekitar 7,8% peningkatan akurasi pemetaan penutup lahan dan sekitar 1,6% peningkatan akurasi pemetaan komunitas mangrove yang diperoleh dengan metode klasifikasi berbasis objek. ABSTRACTResearch on mangrove mapping at the Liong River Bengkalis Riau Province was very limited, therefore the spatial data availability of mangrove in Liong River is also very limited. The use of satellite remote sensing to map mangrove has become widespread as it can provide accurate, effecient, and repeatable assessments. The purposed of this study was to map mangrove at the community level using sentinel 2B imagery based on object-based classification method (OBIA) and it compared pixel-based classification at Liong River, Bengkalis, Riau Provinc. This study was used support vector machine (SVM) algorithm. The scheme classification use is that land cover and mangrove community. The classification data of land cover was collected using unmanned aerial vehicle (UAV) and community mangrove was using transect data of 2013. The result of land cover classification and community mangrove indicated that object-based classification technique was better than pixel-based classification. The highest an overall accuracy of land cover is 78.7% versus 70.9%, whereas mangrove community is 76.6 versus 75.0%. Approximately 7.8% increase in accuracy can be achieved by object-based method of classification for land cover and 1.6% for mangrove community.