Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : INTECOMS: Journal of Information Technology and Computer Science

Usability Aplikasi Kebencanaan di Indonesia Dengan Usability Testing dan Sistem Usability Scale Mochammad Zakiyamani; Lindung Parlingotan Manik
INTECOMS: Journal of Information Technology and Computer Science Vol 5 No 2 (2022): INTECOMS: Journal of Information Technology and Computer Science
Publisher : Institut Penelitian Matematika, Komputer, Keperawatan, Pendidikan dan Ekonomi (IPM2KPE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31539/intecoms.v5i2.5335

Abstract

Indonesia sebagai negara kepulauan berada pada posisi geografis, geologis, hidrologis, dan demografi yang rawan bencana. Secara geografis, 83% wilayah Indonesia (383 kab/kota) berpotensi risiko bencana tinggi. Apalagi hingga saat ini belum ada peneliti, sistem maupun alat yang mampu memprediksi kapan gempa akan terjadi. Walaupun demikian ada beberapa aplikasi kebencanaan yang ada di Indonesia yang dapat membantu memberikan informasi bencana. Namun aplikasi yang ada banyak terdapat keluhan pengguna khususnya masalah usability. Penelitian ini dilakukan untuk menganalisis keluhan pengguna dengan melakukan usability testing untuk mengetahui kelemahan serta menguji tingkat usability pada aplikasi kebencanaan di dalam mengukur variabel efektifitas, efisiensi, dan kepuasan dalam menggunakan aplikasi kebencanaan di Indonesia. Metode yang digunakan dalam penelitian ini adalah usability testing dengan teknik performance measurement dan restrsopective think aloud. Sedangkan responden yang digunakan dalam penelitian ini sebanyak 30 orang sebagai peserta uji dan 400 responden melakukan pengisian kuesioner. Hasil dari pengujian usability menunjukan bahwa nilai komponen efektivitas sebesar 89%, nilai komponen efisiensi sebesar 0,13 goals/second dan nilai kepuasan sebesar 63,22%.
Prediksi Cacat Perangkat Lunak Kelas Tidak Seimbang Menggunakan Resample J48 Dan J48 Consolidated Nurjabar, Ilham; Manik, Lindung Parningotan
INTECOMS: Journal of Information Technology and Computer Science Vol 7 No 4 (2024): INTECOMS: Journal of Information Technology and Computer Science
Publisher : Institut Penelitian Matematika, Komputer, Keperawatan, Pendidikan dan Ekonomi (IPM2KPE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31539/intecoms.v7i4.10489

Abstract

Prediksi cacat perangkat lunak merupakan aspek penting dalam jaminan kualitas perangkat lunak, dengan tujuan mengidentifikasi dan mengatasi potensi cacat sebelum mereka muncul dalam lingkungan produksi. Penelitian ini menyajikan pendekatan inovatif untuk mengatasi masalah distribusi kelas yang tidak seimbang dalam prediksi cacat perangkat lunak menggunakan teknik resampling dan algoritma J48 dan J48 Consolidated. Selain itu, penelitian ini memperkenalkan varian baru dari J48, yang disebut sebagai J48 Consolidated, yang menggabungkan beberapa pohon keputusan menjadi satu model ensemble tunggal untuk meningkatkan kinerja prediksi. Model J48 Consolidated dibandingkan dengan algoritma J48 tradisional dalam konteks prediksi cacat perangkat lunak dengan distribusi kelas yang tidak seimbang. Dataset yang yang digunakan pada penelitian ini menggunakan dataset PROMISE repository. Hasil penelitian menunjukan bahwa integrase Algoritma RUS + J48 Consolidated layak digunakan untuk memprediksi cacat software dengan rata-rata akurasi 78% dengan nilai AUC 0.783. Penelitian ini menguji kinerja J48 dengan pendekata ROS dan RUS menggunakan Algoritma J48 dan J48 Consolidated. Hasil penelitian menunjukan model RUS+J48 Consolidated lebih baik dari model RUS+J48 dengan nilai rata-rata akurasi 78% dan 77% serta nilai AUC 0.783 dan 0.766.
Analisis Sentimen Ulasan Review Aplikasi MyTelkomsel, IndosatM3 dan MyXl di Google Play Store Menggunakan Metode Bert Asih, Dybio Dompu Hot; Manik, Lindung Parningotan
INTECOMS: Journal of Information Technology and Computer Science Vol 8 No 1 (2025): INTECOMS: Journal of Information Technology and Computer Science
Publisher : Institut Penelitian Matematika, Komputer, Keperawatan, Pendidikan dan Ekonomi (IPM2KPE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31539/intecoms.v8i1.12817

Abstract

Aplikasi seluler dari penyedia layanan telekomunikasi, seperti MyTelkomsel, IndosatM3, dan MyXL, semakin penting dalam kehidupan sehari-hari konsumen. Pengguna sering meninggalkan ulasan dan penilaian di platform seperti Google PlayStore, yang dapat menjadi sumber informasi berharga bagi perusahaan untuk meningkatkan kualitas layanan. Penelitian ini bertujuan untuk melakukan analisis sentimen terhadap ulasan pengguna aplikasi MyTelkomsel, IndosatM3, dan MyXL di Google PlayStore menggunakan BERT. Penelitian ini dilakukan untuk analisa sentimen terhadap aplikasi MyTelkomsel, IndosatM3 dan MyXl di Google Play Store. Data review komentar diambil dari fitur komentar yang ada di Google Play Store menggunakan teknik scrapping. Data yang digunakan berjumlah 600 records. Hasil dari analisa sentimen dapat dimanfaatkan untuk melihat respon pengguna MyTelkomsel, IndosatM3 dan MyXl lalu pengembang bisa memaksimalkan fitur yang dirasa kurang oleh pengguna. Model dan metode yang digunakan adalah model pre- trained BERT. Dalam penelitian ini, kami mengumpulkan data ulasan dari ketiga aplikasi tersebut dan mengklasifikasikannya ke dalam tiga kategori sentimen utama: positif, negatif, dan netral. Model BERT dilatih untuk mengenali pola dalam ulasan tersebut dan mengklasifikasikan sentimen dengan akurasi yang tinggi. Aplikasi seluler dari penyedia layanan telekomunikasi, seperti MyTelkomsel, IndosatM3, dan MyXL, semakin penting dalam kehidupan sehari-hari konsumen. Pengguna sering meninggalkan ulasan dan penilaian di platform seperti Google PlayStore, yang dapat menjadi sumber informasi berharga bagi perusahaan untuk meningkatkan kualitas layanan. Penelitian ini bertujuan untuk melakukan analisis sentimen terhadap ulasan pengguna aplikasi MyTelkomsel, IndosatM3, dan MyXL di Google PlayStore menggunakan BERT. Penelitian ini dilakukan untuk analisa sentimen terhadap aplikasi MyTelkomsel, IndosatM3 dan MyXl di Google Play Store. Data review komentar diambil dari fitur komentar yang ada di Google Play Store menggunakan teknik scrapping. Data yang digunakan berjumlah 600 records. Hasil dari analisa sentimen dapat dimanfaatkan untuk melihat respon pengguna MyTelkomsel, IndosatM3 dan MyXl lalu pengembang bisa memaksimalkan fitur yang dirasa kurang oleh pengguna. Model dan metode yang digunakan adalah model pre- trained BERT. Dalam penelitian ini, kami mengumpulkan data ulasan dari ketiga aplikasi tersebut dan mengklasifikasikannya ke dalam tiga kategori sentimen utama: positif, negatif, dan netral. Model BERT dilatih untuk mengenali pola dalam ulasan tersebut dan mengklasifikasikan sentimen dengan akurasi yang tinggi.