Claim Missing Document
Check
Articles

Found 3 Documents
Search

A Review on the Hydroisomerisasion of n-Parafins over Supported Metal Catalysts Muhammad Safaat; Indri Badria Adilina; Silvester Tursiloadi
Jurnal Rekayasa Proses Vol 15, No 2 (2021)
Publisher : Departemen Teknik Kimia Fakultas Teknik Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jrekpros.67587

Abstract

Catalytic hydroisomerization of n-paraffin aims to produce branched paraffin isomers and suppress cracking reactions in the production of the low cloud point of biodiesel. The development of the type of metal and catalyst support, amount of metal loading, and reaction conditions are important to increase the catalyst activity. A high performace catalyst for hydroisomerization bears bifunctional characteristics with a high level of hydrogenation active sites and low acidity, maximizing the progress of hydroisomerization compared to the competitive cracking reaction. In addition, a catalyst support with smaller pore size can hinder large molecular structure isoparaffins to react on the acid site in the pore thus providing good selectivity for converting n-paraffin. Catalysts loaded with noble metals (Pt or Pd) showed significantly higher selectivity for hydroisomerization than non-noble transition metals such as Ni, Co, Mo and W. The reaction temperature and contact time are also important parameters in hydroisomerization of long chain paraffin, because long contact times and high temperatures tend to produce undesired byproducts of cracking. This review reports several examples of supported metal catalyst used in the hydroisomerization of long chain hydrocarbon n-paraffins under optimized reaction conditions, providing the best isomerization selectivity results with the lowest amount of byproducts. The role of various metals and their supports will be explained mainly for bifunctional catalysts.
A Review on the Hydroisomerisasion of n-Parafins over Supported Metal Catalysts Muhammad Safaat; Indri Badria Adilina; Silvester Tursiloadi
Jurnal Rekayasa Proses Vol 15, No 2 (2021)
Publisher : Departemen Teknik Kimia Fakultas Teknik Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jrekpros.67587

Abstract

Catalytic hydroisomerization of n-paraffin aims to produce branched paraffin isomers and suppress cracking reactions in the production of the low cloud point of biodiesel. The development of the type of metal and catalyst support, amount of metal loading, and reaction conditions are important to increase the catalyst activity. A high performace catalyst for hydroisomerization bears bifunctional characteristics with a high level of hydrogenation active sites and low acidity, maximizing the progress of hydroisomerization compared to the competitive cracking reaction. In addition, a catalyst support with smaller pore size can hinder large molecular structure isoparaffins to react on the acid site in the pore thus providing good selectivity for converting n-paraffin. Catalysts loaded with noble metals (Pt or Pd) showed significantly higher selectivity for hydroisomerization than non-noble transition metals such as Ni, Co, Mo and W. The reaction temperature and contact time are also important parameters in hydroisomerization of long chain paraffin, because long contact times and high temperatures tend to produce undesired byproducts of cracking. This review reports several examples of supported metal catalyst used in the hydroisomerization of long chain hydrocarbon n-paraffins under optimized reaction conditions, providing the best isomerization selectivity results with the lowest amount of byproducts. The role of various metals and their supports will be explained mainly for bifunctional catalysts.
SYNTHESIS AND PROPERTIES OF ETHOXYLATED GLYCEROL MONOOLEATE AS PALM OIL BASED NONIONIC SURFACTANTS Indri Badria Adilina; Egi Agustian; Yenny Meliana; Anny Sulaswatty
Jurnal Kimia Terapan Indonesia Vol 17, No 1 (2015)
Publisher : Research Center for Chemistry - LIPI

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (438.511 KB) | DOI: 10.14203/jkti.v17i1.22

Abstract

Palm oil based nonionic surfactants were synthesized by reacting glycerol monooleate with ethylene oxide at 80 ºC in the prescence of an alkaline catalyst. Purification of the products was conducted by use of acetic acid and black carbon which gave ethoxylated products (EGMO) with a higher level of viscocity and greater solubility in water. Physical and chemical properties of the product such as surface activity, cloud point, acid value, ester value, hydroxyl value, and hydrophilic-lipophilic balance was also determined and results varied depending on the reagent molar ratio. The synthesized EGMO were soluble in water and therefore show potential use as surface active agents in personal care and cosmetic products.Keywords:   nonionic surfactant, ethoxylation, glycerol monooleate, palm oil