Aina Musdholifah
Departemen Ilmu Komputer dan Elektronika, FMIPA UGM, Yogyakarta

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Case-Based Reasoning for Stroke Disease Diagnosis Nelson Rumui; Agus Harjoko; Aina Musdholifah
IJCCS (Indonesian Journal of Computing and Cybernetics Systems) Vol 12, No 1 (2018): January
Publisher : IndoCEISS in colaboration with Universitas Gadjah Mada, Indonesia.

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijccs.26331

Abstract

Stroke is a type of cerebrovascular disease that occurs because blood flow to the brain is disrupted. Examination of stroke accurately using CT scan, but the tool is not always available, so it can be done by the Siriraj Score. Each type of stroke has similar symptoms so doctors should re-examine similar cases prior to diagnosis. The hypothesis of the Case-based reasoning (CBR) method is a similar problems having similar solution.This research implements CBR concept using Siriraj score, dense index and Jaccard Coeficient method to perform similarity calculation between cases.The test is using k-fold cross validation with 4 fold and set values of threshold (0.65), (0.7), (0.75), (0.8), (0.85), (0.9), and (0.95). Using 45 cases of data test  and 135 cases of case base. The test showed that threshold of 0.7 is suitable to be applied in sensitivity (89.88%) and accuracy (84.44% for CBR using indexing and 87.78% for CBR without indexing). Threshold of 0.65 resulted high sensitivity  and accuracy but showed many cases of irrelevant retrieval results. Threshold (0.75), (0.8), (0.85), (0.9) and (0.95) resulted in sensitivity (65.48%, 59.52%, 5.95%, 3,57% and 0%) and accuracy of CBR using indexing (61.67%, 55.56%, 5.56%, 3.33%, and 0%) and accuracy of CBR without indexing (62.78% 56.67%, 55.56%, 5.56%, 3.33%, and 0%).
Adaptive Unified Differential Evolution for Clustering Maulida Ayu Fitriani; Aina Musdholifah; Sri Hartati
IJCCS (Indonesian Journal of Computing and Cybernetics Systems) Vol 12, No 1 (2018): January
Publisher : IndoCEISS in colaboration with Universitas Gadjah Mada, Indonesia.

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijccs.27871

Abstract

Various clustering methods to obtain optimal information continues to evolve one of its development is Evolutionary Algorithm (EA). Adaptive Unified Differential Evolution (AuDE), is the development of Differential Evolution (DE) which is one of the EA techniques. AuDE has self adaptive scale factor control parameters (F) and crossover-rate (Cr).. It also has a single mutation strategy that represents the most commonly used standard mutation strategies from previous studies.The AuDE clustering method was tested using 4 datasets. Silhouette Index and CS Measure is a fitness function used as a measure of the quality of clustering results. The quality of the AuDE clustering results is then compared against the quality of clustering results using the DE method.The results show that the AuDE mutation strategy can expand the cluster central search produced by ED so that better clustering quality can be obtained. The comparison of the quality of AuDE and DE using Silhoutte Index is 1:0.816, whereas the use of CS Measure shows a comparison of 0.565:1. The execution time required AuDE shows better but Number significant results, aimed at the comparison of Silhoutte Index usage of 0.99:1 , Whereas on the use of CS Measure obtained the comparison of 0.184:1.