Aina Musdholifah
Department of Electronics and Computer Science, FMIPA UGM, Yogyakarta

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Local Triangular Kernel-Based Clustering (LTKC) for Case Indexing on Case-Based Reasoning Damar Riyadi; Aina Musdholifah
IJCCS (Indonesian Journal of Computing and Cybernetics Systems) Vol 12, No 2 (2018): July
Publisher : IndoCEISS in colaboration with Universitas Gadjah Mada, Indonesia.

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijccs.30423

Abstract

This study aims to improve the performance of Case-Based Reasoning by utilizing cluster analysis which is used as an indexing method to speed up case retrieval in CBR. The clustering method uses Local Triangular Kernel-based Clustering (LTKC). The cosine coefficient method is used for finding the relevant cluster while similarity value is calculated using Manhattan distance, Euclidean distance, and Minkowski distance. Results of those methods will be compared to find which method gives the best result. This study uses three test data: malnutrition disease, heart disease, and thyroid disease. Test results showed that CBR with LTKC-indexing has better accuracy and processing time than CBR without indexing. The best accuracy on threshold 0.9 of malnutrition disease, obtained using the Euclidean distance which produces 100% accuracy and 0.0722 seconds average retrieval time. The best accuracy on threshold 0.9 of heart disease, obtained using the Minkowski distance which produces 95% accuracy and 0.1785 seconds average retrieval time. The best accuracy on threshold 0.9 of thyroid disease, obtained using the Minkowski distance which produces 92.52% accuracy and 0.3045 average retrieval time. The accuracy comparison of CBR with SOM-indexing, DBSCAN-indexing, and LTKC-indexing for malnutrition diseases and heart disease resulted that they have almost equal accuracy.