Nur Rokhman
Department of Electronics and Computer Science, FMIPA UGM, Yogyakarta

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

The MapReduce Model on Cascading Platform for Frequent Itemset Mining Nur Rokhman; Amelia Nursanti
IJCCS (Indonesian Journal of Computing and Cybernetics Systems) Vol 12, No 2 (2018): July
Publisher : IndoCEISS in colaboration with Universitas Gadjah Mada, Indonesia.

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijccs.34102

Abstract

The implementation of parallel algorithms is very interesting research recently. Parallelism is very suitable to handle large-scale data processing. MapReduce is one of the parallel and distributed programming models. The implementation of parallel programming faces many difficulties. The Cascading gives easy scheme of Hadoop system which implements MapReduce model.Frequent itemsets are most often appear objects in a dataset. The Frequent Itemset Mining (FIM) requires complex computation. FIM is a complicated problem when implemented on large-scale data. This paper discusses the implementation of MapReduce model on Cascading for FIM. The experiment uses the Amazon dataset product co-purchasing network metadata.The experiment shows the fact that the simple mechanism of Cascading can be used to solve FIM problem. It gives time complexity O(n), more efficient than the nonparallel which has complexity O(n2/m).