Aina Musdholifah
Department of Computer Science and Electronics, FMIPA UGM, Yogyakarta

Published : 6 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 6 Documents
Search

Optimization of ARIMA Forecasting Model using Firefly Algorithm Ilham unggara; Aina Musdholifah; Anny Kartika Sari
IJCCS (Indonesian Journal of Computing and Cybernetics Systems) Vol 13, No 2 (2019): April
Publisher : IndoCEISS in colaboration with Universitas Gadjah Mada, Indonesia.

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijccs.37666

Abstract

 Time series prediction aims to control or recognize the behavior of the system based on the data in a certain period of time. One of the most widely used method in time series prediction is ARIMA (Autoregressive Integrated Moving Average). However, ARIMA has a weakness in determining the optimal model. firefly algorithm is used to optimize ARIMA model (p, d, q). by finding the smallest AIC (Akaike Information Criterion) value in determining the best ARIMA model. The data used in the study are daily stock data JCI period January 2013 until August 2016 and data of foreign tourist visits to Indonesia period January 1988 to November 2017.Based on testing, for JCI data, obtained predicted results with Box-Jenkins ARIMA model produces RMSE 49.72, whereas the prediction with the ARIMA Optimization model yielded RMSE 49.48. For the data of Foreign Tourist Visits, the predicted results with the Box-Jenkins ARIMA model resulted in RMSE 46088.9, whereas the predicted results with ARIMA optimization resulted in RMSE 44678.4. From these results it can be concluded that the optimization of ARIMA model with Firefly Algorithm produces better forecasting model than ARIMA model without Optimization.
Sarcasm Detection For Sentiment Analysis in Indonesian Tweets Yessi Yunitasari; Aina Musdholifah; Anny Kartika Sari
IJCCS (Indonesian Journal of Computing and Cybernetics Systems) Vol 13, No 1 (2019): January
Publisher : IndoCEISS in colaboration with Universitas Gadjah Mada, Indonesia.

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijccs.41136

Abstract

Twitter is one of the social medias that are widely used at the moment. Tweet conversations can be classified according to their sentiments. The existence of sarcasm contained in a tweet sometimes causes incorrect determination of the tweet’s sentiment because sarcasm is difficult to analyze automatically, even by humans. Hence, sarcasm detection needs to be conducted, which is expected to improve the results of sentiment analysis. The effect of sarcasm detection on sentiment analysis can be seen in terms of accuracy, precision and recall. In this paper, detection of sarcasm is applied to Indonesian tweets. The feature extraction of sarcasm detection uses unigram and 4 Boazizi feature sets which consist of sentiment-relate features, punctuation-relate features, lexical and syntactic features, and top word features. Detection of sarcasm uses the Random Forest algorithm. The feature extraction of sentiment analysis uses TF-IDF, while the classification uses Naïve Bayes algorithm. The evaluation shows that sentiment analysis with sarcasm detection improves the  accuracy of sentiment analysis about 5.49%. The accuracy of the model is 80.4%, while the precision is 83.2%, and the recall is 91.3%.
Chatbot in Bahasa Indonesia using NLP to Provide Banking Information Abidah Elcholiqi; Aina Musdholifah
IJCCS (Indonesian Journal of Computing and Cybernetics Systems) Vol 14, No 1 (2020): January
Publisher : IndoCEISS in colaboration with Universitas Gadjah Mada, Indonesia.

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijccs.41289

Abstract

FAQs are mostly provided on the company's website to inform their service and product. It's just that the FAQ is usually less interactive and presents too much information that is less practical. Chatbot can be used as an alternative in providing FAQ. In this study, chatbots were developed for BTPN in providing information about their products, namely Jenius. Chatbot developed utilizes natural language processing so that the system can understand user queries in the form of natural language. The cosine similarity algorithm is used to find similarities between queries and patterns in the knowledge base. Patterns with the highest cosine values are considered to be most similar to user queries. It's just that, this algorithm does not pay attention to the structure of the sentence so that it adds checking the structure of the sentence with the parse tree to give weight to the pattern. This chatbot application has been tested by 10 users and it was found that the suitability of the answers with user input was 84%. Therefore the chatbot developed can be used by BTPN to provide Jenius product information to consumers more interactively and practically.
Recommendation System for Thesis Topics Using Content-based Filtering Hans Satria Kusuma; Aina Musdholifah
IJCCS (Indonesian Journal of Computing and Cybernetics Systems) Vol 15, No 1 (2021): January
Publisher : IndoCEISS in colaboration with Universitas Gadjah Mada, Indonesia.

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijccs.62716

Abstract

 When pursuing their bachelor degree, every students are required to pursue a thesis in order to graduate from the major that they take. However, during the process, students got several difficulty regarding chosing their thesis topics. Therefore, a recommendation system is needed to classify thesis topics based on the students’ interest and abilities. This study developed a recommendation system for thesis topics using content-based filtering where the students will be asked to choose the course that they interested in along with their grades. After getting all the required data, the recommendation system will process the data and then it’ll show the title and the abstract of publication that fits the criteria.In this research, there are 2 datasets that is used, there are lecturer publication within 3 years and syllabus data of Computer Science UGM course. After running this research, it was found that the recommendation system has an average 7.46 seconds running time. It was also found that the recommendation system got an average 83% of the recommendation system objectives. The recommendation system objectives consist of relevance, novelty, serendipity, and increasing recommendation diversity.
Author Obfuscation on Indonesian News Articles Using Genetic Algorithms Rayhan Naufal Ramadhan; Yunita Sari; Aina Musdholifah
IJCCS (Indonesian Journal of Computing and Cybernetics Systems) Vol 15, No 2 (2021): April
Publisher : IndoCEISS in colaboration with Universitas Gadjah Mada, Indonesia.

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijccs.64526

Abstract

Authorship attribution is a method for identifying the author of a text from a group of potential authors and can solve the anonymity of unknown authors. Such method threatens anyone’s privacy, especially those who wish to write anonymously. To address this issue, author obfuscation is proposed to modify a text to disguise its author.In this research, a genetic algorithm-based author obfuscation model was created to modify Indonesian news articles to avoid identification from authorship attribution while keeping its semantics. The model iteratively changed some words in the article using crossover and mutation techniques guided by a fitness function which involve identification probability and similarity to the original article.The model is evaluated based on safety, soundness, and sensibleness parameter. The model has good safety since it can reduce the given authorship attribution model's accuracy by 0.3018 but drops to 0.1179 when tested on different models. Its soundness is pretty good since the similarity of the modified to the original articles reaches 0.7817. The model obtained a score of 2.571 on a scale of 0 to 4 in terms of sensibleness which indicates that some articles are acceptable in terms of grammar, but not a few are messy.
Fast Non-dominated Sorting in Multi Objective Genetic Algorithm for Bin Packing Problem Muhammad Bintang Bahy; Aina Musdholifah
IJCCS (Indonesian Journal of Computing and Cybernetics Systems) Vol 16, No 1 (2022): January
Publisher : IndoCEISS in colaboration with Universitas Gadjah Mada, Indonesia.

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijccs.70677

Abstract

The bin packing problem is a problem where goods with different volumes and dimensions are put into a container so that the volume of goods inserted is maximized. The problem of multi-objective bin packing is a problem that is more commonly found in everyday life, because what is considered in packing is usually not only volume.In this research, a multi-objective genetic algorithm is proposed to solve the multi-objective bin packing problem. The proposed genetic algorithm uses non-dominated sorting and crowding distance methods to get the best solution for each objective and to avoid bias. The algorithm is then tested with several test classes that represent different combinations of item and container sizes.From the results of the tests carried out, it was found that the proposed algorithm can find several solutions which are the best candidate solutions for each objective. Also found how the correlation of each objective in the population.