Rumaisah Hidayatillah
Department of Informatics Engineering, Universitas Narotama, Surabaya

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Levels of Political Participation Based on Naive Bayes Classifier Rumaisah Hidayatillah; Mirwan Mirwan; Mohammad Hakam; Aryo Nugroho
IJCCS (Indonesian Journal of Computing and Cybernetics Systems) Vol 13, No 1 (2019): January
Publisher : IndoCEISS in colaboration with Universitas Gadjah Mada, Indonesia.

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijccs.42531

Abstract

Nowadays, social media is growing rapidly and globally until it finally became an important part of society. During campaign period for the regional head election in Indonesia, the candidates and their supporting parties actively use social media as a campaign tool. Social media like Twitter has been known as a political microblogging media that can provide data about current political event based on users’ tweets. By using Twitter as a data source, this study analyzes public participation during campaign period for 2018 Central Java regional head election. The purpose is to observe how much reaction is given to each candidate who advanced in the election. By using the crawling program, all tweets containing certain candidate names will be downloaded. After going through a series of preprocessing stages, data can be classified using Naive Bayes. Predictor features in classification datasets are the number of replies, retweets, and likes. While the target variable is reaction that is divided into three levels, including high, medium, and low. These levels are determined based on users’ reaction in a tweet. By using these rules, Naive Bayes managed to classify data correctly as much as 76.74% for Ganjar Pranowo and 68.81% for Sudirman Said.