This Author published in this journals
All Journal Jurnal SPEKTRUM
Claim Missing Document
Check
Articles

Found 1 Documents
Search

PERBANDINGAN METODE HIDDEN MARKOV MODEL DAN VECTOR QUANTIZATION UNTUK APLIKASI IDENTIFIKASI SUARA M. G. J. Harry Khesa S; W. Setiawan; I.G.A.K. Diafari Djuni H
Jurnal SPEKTRUM Vol 3 No 2 (2016): Jurnal SPEKTRUM
Publisher : Program Studi Teknik Elektro UNUD

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (225.486 KB)

Abstract

Identifikasi suara merupakan suatu cara yang bisa digunakan untuk mengetahui perbedaan dari masing – masing individu seperti halnya fingerprint scan, retinal scan, atau face recognition. Diperlukan suatu aplikasi untuk memudahkan dalam proses identifikasi. Metode yang biasanya digunakan untuk recognition pada Aplikasi Identifikasi Suara adalah Hidden Markov Model atau Vector Quantization. Kedua metode pengenalan untuk Aplikasi Identifikasi Suara ini akan dibandingkan unjuk kerjanya dalam kondisi ideal maupun tidak ideal. Aplikasi identifikasi suara dengan metode Vector Quantization mempunyai nilai unjuk kerja lebih baik dengan hasil unjuk kerja sebesar 93% dibandingkan metode Hidden Markov Model yang sebesar 85% pada kondisi ideal dan 78% berbanding 69,5% pada kondisi tidak ideal, hal ini dikarenakan, pada metode Vector Quantization menggunakan layer tunggal dan tidak adanya layer tersembunyi seperti pada metode Hidden Markov Model.