Claim Missing Document
Check
Articles

Found 2 Documents
Search

Perbandingan Metode Extreme Learning Machine dan Particle Swarm Optimization Extreme Learning Machine untuk Peramalan Jumlah Penjualan Barang Susila Handika; IAD Gririantari; Agus Dharma
Jurnal Teknologi Elektro Vol 15 No 1 (2016): (January - June) Majalah Ilmiah Teknologi Elektro
Publisher : Universitas Udayana

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (316.473 KB) | DOI: 10.24843/MITE.2016.v15i01p15

Abstract

Extreme Learning Machine (ELM) merupakan salah satu metode pembelajaran dari Artificial Neural Network yang memberikan tingkat akurasi dan kecepatan yang lebih baik dari pada metode pembelajaran lainnya. Salah satu kelemahan dari metode ELM adalah jumlah hidden nodes ditentukan dengan cara try and error, sehingga tidak bisa diketahui berapa jumlah hidden nodes yang tepat untuk mendapatkan hasil peramalan menggunakan metode ELM. Untuk mengatasi masalah tersebut digunakan metode optimasi Particle Swarm Optimization untuk mencari jumlah hidden nodes yang optimal. Data yang digunakan untuk keperluan analisis adalah data time series penjualan barang salah satu minimarket di Bali. Hasil peramalan akan diukur mengunggunakan Mean Square Error (MSE) dengan data uji yang sama. Hasil penelitian menunjukkan metode PSO dapat diterapkan pada metode ELM untuk mengoptimasi jumlah hidden nodes. MSE yang dihasilkan oleh metode PSO ELM lebih kecil dibanding metode ELM. Selain itu range error yang dihasilkan oleh metode PSO ELM juga lebih kecil dibanding metode ELM DOI: 10.24843/MITE.1501.15
Perbandingan Metode Extreme Learning Machine dan Particle Swarm Optimization Extreme Learning Machine untuk Peramalan Jumlah Penjualan Barang Susila Handika; IAD Gririantari; Agus Dharma
Jurnal Teknologi Elektro Vol 15 No 1 (2016): (January - June) Majalah Ilmiah Teknologi Elektro
Publisher : Program Studi Magister Teknik Elektro Universitas Udayana

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24843/MITE.2016.v15i01p15

Abstract

Extreme Learning Machine (ELM) merupakan salah satu metode pembelajaran dari Artificial Neural Network yang memberikan tingkat akurasi dan kecepatan yang lebih baik dari pada metode pembelajaran lainnya. Salah satu kelemahan dari metode ELM adalah jumlah hidden nodes ditentukan dengan cara try and error, sehingga tidak bisa diketahui berapa jumlah hidden nodes yang tepat untuk mendapatkan hasil peramalan menggunakan metode ELM. Untuk mengatasi masalah tersebut digunakan metode optimasi Particle Swarm Optimization untuk mencari jumlah hidden nodes yang optimal. Data yang digunakan untuk keperluan analisis adalah data time series penjualan barang salah satu minimarket di Bali. Hasil peramalan akan diukur mengunggunakan Mean Square Error (MSE) dengan data uji yang sama. Hasil penelitian menunjukkan metode PSO dapat diterapkan pada metode ELM untuk mengoptimasi jumlah hidden nodes. MSE yang dihasilkan oleh metode PSO ELM lebih kecil dibanding metode ELM. Selain itu range error yang dihasilkan oleh metode PSO ELM juga lebih kecil dibanding metode ELM DOI: 10.24843/MITE.1501.15