This Author published in this journals
All Journal Reaktor
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Malaysian Crude Oil Emulsions : Stability Study B. Pramudono; H. B. Mat
Reaktor Volume 6 No. 1 Juni 2002
Publisher : Dept. of Chemical Engineering, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (4582.401 KB) | DOI: 10.14710/reaktor.6.1.29-34

Abstract

The stability of water-in-oil emulsion of some Malaysian crude oils was studied with particular emphasis on effect of interfacial active components existed in the crude oil, i.e. asphaltene, resin and wax. The emulsion stability was studied by measuring the volume of water or oil phase separated in variation with time, water hold up, and the heights of the sedimenting/coalescing interfaces during the separation at various temperatures. The study investigated the influence of asphaltene, resin and wax on emultion stability if it`s present in the crude oil alone, together or combination one of the others. The result show that the interfacial active component that stabilize emulsion is asphaltene. The resin and wax  do not form stale emulsion either aloneor together. There is a correlation between emulsion stability and physicochemical properties of crude oil which showed that higher asphaltene content in the crude oil would form more stable emultion. Increased temperature was found to cause instability of emultion. Keywords : emultion stability, crude oil, asphaltene, resin and wax
Demulsifier Selection Based On The Evaluation Of Demulsification Performance Indicators B. Pramudono; H. B. Mat
Reaktor Volume 09 No.1 Juni 2005
Publisher : Dept. of Chemical Engineering, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (7193.986 KB) | DOI: 10.14710/reaktor.9.2.58-66

Abstract

A method for characterizing and selecting demulsifiers has been developed. The development was based on either the relationships between the demulsification parameters and demulsifier performance or demulsifier characteristics and demulsifier performance. The importance of each of these parameters to performance was discussed. The result was eight demulsification performance indicators consisting of the percentage of water separation, percentage of oil separation, demulsification efficiency, demulsification effectiveness, partition coefficient, interfacial pressure, interfacial activity, and Hydrophilic Balance (HLB). Quantification of the indicators conducted by determination of the performance indexes for each indicator. It was obtained from the condition that the demulsifier exhibits good performance. Additionally, the study found a correlation between the parameters it self. The demulsifier effectiveness as well as the interfacial pressure reaches a maximum value when the partition coefficient closed unity. Increasing of the interfacial pressure, in consequence, will increase  both the demulsifier effectiveness and interfacial activity. The effect of both the HLB and molecular weight on the  percentage of separation indicates a weak correlation.Keywords :A method for characterizing and selecting demulsifiers has been developed. The development was based on either the relationships between the demulsification parameters and demulsifier performance or demulsifier characteristics and demulsifier performance. The importance of each of these parameters to performance was discussed. The result was eight demulsification performance indicators consisting of the percentage of water separation, percentage of oil separation, demulsification efficiency, demulsification effectiveness, partition coefficient, interfacial pressure, interfacial activity, and Hydrophilic Balance (HLB). Quantification of the indicators conducted by determination of the performance indexes for each indicator. It was obtained from the condition that the demulsifier exhibits good performance. Additionally, the study found a correlation between the parameters it self. The demulsifier effectiveness as well as the interfacial pressure reaches a maximum value when the partition coefficient closed unity. Increasing of the interfacial pressure, in consequence, will increase  both the demulsifier effectiveness and interfacial activity. The effect of both the HLB and molecular weight on the  percentage of separation indicates a weak correlation.Keywords : Chemical demulsifier, demulsifier performance, demulsification parameters, performance index