Anil Kumar Sarma
Chemical Conversion Division, Sardar Swaran Singh National Institute of Renewable Energy, Kapurthala, Punjab-144601

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Formulation of SrO-MBCUS Agglomerates for Esterification and Transesterification of High FFA Vegetable Oil Prashant Kumar; Anil Kumar Sarma; Ajay Bansal; Mithilesh Kumar Jha
Bulletin of Chemical Reaction Engineering & Catalysis 2016: BCREC Volume 11 Issue 2 Year 2016 (August 2016)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (696.262 KB) | DOI: 10.9767/bcrec.11.2.540.140-150

Abstract

Musa Balbisiana Colla Underground Stem (MBCUS) catalyst was treated thermally mixing with 5:1 w/w of Strontium Oxide (SrO) and the dynamic sites were reformed. The MBCUS-SrO showed sharper crystalline phases as evidence from XRD and TEM analysis. The composition and morphology were characterized from BET, SEM, EDX thermo-gravimetric analysis (TGA) and XRF analysis. The optimization process for biodiesel production from Jatropha curcas L oil (JCO) having high percentage of free fatty acids was carried out using orthogonal arrays adopting the Taguchi method. The linear equation was obtained from the analysis and subsequent biodiesel production (96% FAME) was taken away from the JCO under optimal reaction conditions. The biodiesel so prepared had identical characteristics to that with MBCUS alone, but at a lower temperature (200˚C) and internal vapour pressure. Metal leaching was much lower while reusability of the catalyst was enhanced. It was also confirmed that the particle size has little impact upon the conversion efficacy, but the basic active sites are more important. 
Formulation of SrO-MBCUS Agglomerates for Esterification and Transesterification of High FFA Vegetable Oil Prashant Kumar; Anil Kumar Sarma; Ajay Bansal; Mithilesh Kumar Jha
Bulletin of Chemical Reaction Engineering & Catalysis 2016: BCREC Volume 11 Issue 2 Year 2016 (August 2016)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.11.2.540.140-150

Abstract

Musa Balbisiana Colla Underground Stem (MBCUS) catalyst was treated thermally mixing with 5:1 w/w of Strontium Oxide (SrO) and the dynamic sites were reformed. The MBCUS-SrO showed sharper crystalline phases as evidence from XRD and TEM analysis. The composition and morphology were characterized from BET, SEM, EDX thermo-gravimetric analysis (TGA) and XRF analysis. The optimization process for biodiesel production from Jatropha curcas L oil (JCO) having high percentage of free fatty acids was carried out using orthogonal arrays adopting the Taguchi method. The linear equation was obtained from the analysis and subsequent biodiesel production (96% FAME) was taken away from the JCO under optimal reaction conditions. The biodiesel so prepared had identical characteristics to that with MBCUS alone, but at a lower temperature (200˚C) and internal vapour pressure. Metal leaching was much lower while reusability of the catalyst was enhanced. It was also confirmed that the particle size has little impact upon the conversion efficacy, but the basic active sites are more important. 
Utilization of Renewable and Waste Materials for Biodiesel Production as Catalyst Prashant Kumar; Anil Kumar Sarma; M. K. Jha; Ajay Bansal; Bharvee Srivastava
Bulletin of Chemical Reaction Engineering & Catalysis 2015: BCREC Volume 10 Issue 3 Year 2015 (December 2015)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.10.3.8584.221-229

Abstract

The efficient and economic utilization of natural renewable and waste materials of various industries and biomass having non-homogeneous composition is a new dimension of research for biodiesel pro- duction. A combination of these renewable, waste materials and traditional heterogeneous catalyst can also be looked after for the possible solution of heterogeneous catalytic transesterification. This review discusses industrially derived and naturally occurring materials containing calcium, sodium, potassium etc, which were found instrumental for biodiesel production. About 60 research articles and patents have been reviewed and the findings are analysed in this article for developing industrial scale heterogeneous catalytic pilot plant facilities for biodiesel production. © 2015 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).