Renu Gupta
Department of Chemical Engineering, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar 144011

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Pressure Drop Hysteresis of Hydrodynamic States in Packed Tower for Foaming Systems Vijay Sodhi; Renu Gupta
Bulletin of Chemical Reaction Engineering & Catalysis 2011: BCREC Volume 6 Issue 2 Year 2011 (December 2011)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.6.2.828.115-122

Abstract

An experimental investigation was carried out to determine the effects of gas and liquid flow velocities and surface tension on the two-phase phase pressure drop a in a downflow trickle bed reactor. Water and non- Newtonian foaming solutions were employed as liquid phase. More than 240 experimental points for the trickle flow (GCF) and foaming pulsing flow (PF/FPF) regime were obtained for present study. Hydrodynamic characteristics involving two-phase pressure drop significantly influenced by gas and liquid flow rates. For 15 and 30 ppm air-aqueous surfactant solutions, two-phase pressure drop increases with higher liquid and gas flow velocities in trickle flow and foaming/pulsing flow regimes. With decrease in surface tension i.e. for 45 and 60 ppm air-aqueous surfactant systems, two-phase pressure drop increases very sharply during change in regime transition at significantly low liquid and gas velocities. © 2011 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0)