Mohammed Hamzah Abed
Al-Qadisiyah University

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Convolutional neural network for color images classification Nora Ahmed Mohammed; Mohammed Hamzah Abed; Alaa Taima Albu-Salih
Bulletin of Electrical Engineering and Informatics Vol 11, No 3: June 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v11i3.3730

Abstract

Artificial intelligent and application of computer vision are an exciting topic in last few years, and its key for many real time applications like video summarization, image retrieval and image classifications. One of the most trend method in deep learning is a convolutional neural network, used for many applications of image processing and computer vision. In this work convolutional neural networks CNN model proposed for color image classification, the proposed model build using MATLAB tools of deep learning. In addition, the suggested model tested on three different datasets, with different size. The proposed model achieved highest result of accuracy, precision and sensitivity with the largest dataset and it was as following: accuracy is 0.9924, precision is 0.9947 and sensitivity is 0.9931, compare with other models.
Finger knuckle pattern person identification system based on LDP-NPE and machine learning methods Ali Mohsin Aljuboori; Mohammed Hamzah Abed
Bulletin of Electrical Engineering and Informatics Vol 11, No 6: December 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v11i6.4236

Abstract

Biometric-based individual distinguishing proof is a successful strategy for consequently perceiving, with high certainty, an individual's character. The utilization of finger knuckle pictures for individual ID has shown promising outcomes and produced a ton of interest in biometrics. By seeing that the surface example delivered by twisting the finger knuckle is profoundly particular, in this paper we present a new biometric validation framework utilizing finger-knuckle-print (FKP) imaging. In this paper, another methodology in view of neighborhood surface examples is proposed. Local derivative pattern (LDP) histogram is investigated for FKP description. Then based on neighborhood preserving embedding (NPE) is used for dimension reduction to the feature vector. The feature extraction method is computed and evaluated in the identification framework task. The machine learning methods (multiclass support vector machine (MSVM), random forest (RF), k-nearest neighbor (KNN)) are proposed for classification. The system is tested on the PolyU finger knuckle database. The empirical results proved that the proposed model has the best results with RF. Moreover, our proposed LDP-NPE model has been evaluated and the results show remarkable efficiency in comparison with previous work. Experimentally, the proposed model has better accuracy as reflected by 99.65%.