Hasni Griya Anatasia
Program Studi Teknik Informatika Universitas Ahmad Dahlan Yogyakarta

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

PENERAPAN DATA MINING UNTUK MENGETAHUI FAKTOR-FAKTOR YANG MEMPENGARUHI KELAHIRAN BAYI MENGGUNAKAN ASSOCIATION RULES (Studi Kasus: RSKIA BHAKTI IBU YOGYAKARTA) Hasni Griya Anatasia; Tedy Setiadi
Jurnal Sarjana Teknik Informatika Vol 2, No 3 (2014): Oktober
Publisher : Teknik Informatika, Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/jstie.v2i3.2882

Abstract

 Tingginya laju pertumbuhan penduduk disebabkan masih lebih tingginya tingkat kelahiran bayi dibanding tingkat kematian. Pertumbuhan penduduk yang tinggi menyebabkan hasil pembangunan kurang bisa dirasakan masyarakat. Pernikahan dini banyak terjadi di kalangan masyarakat miskin. Tinggi rendahnya kelahiran bayi dalam suatu kelompok penduduk tergantung dari faktor-faktor yang mempengaruhi kelahiran bayi. Faktor-faktor yang mempengaruhi kelahiran bayi yang digunakan dalam penelitian ini yaitu usia ibu, tingkat pendidikan ibu, status pekerjaan ibu, dan urutan anak lahir. Subjek penelitian yang akan dibahas pada penelitian ini adalah di RSKIA BHAKTI IBU Yogyakarta yang membahas mengenai penerapan data mining untuk mengetahui faktor-faktor yang mempengaruhi kelahiran bayi menggunakan Association Rules dengan algoritma apriori. Langkah awal yang dilakukan dalam penelitian ini adalah melakukan pengumpulan data menggunakan metode kepustakaan, observasi, wawancara dan dokumentasi. Kemudian dilakukan analisis kebutuhan sistem, perancangan proses, perancangan antar muka, pengembangan sistem data mining, pembuatan sistem, pengujian menggunakan black box test dan alfa test, evaluasi pola yang ditemukan dan presentasi pengetahuan Penelitian ini akan menghasilkan sebuah aplikasi untuk menampilkan informasi dari proses data mining yaitu faktor yang mempengaruhi kelahiran bayi khususnya faktor dalam data rekam medis kelahiran bayi. Informasi yang akan ditampilkan berupa nilai support dan confidence. Semakin tinggi nilai support dan confidence maka semakin kuat nilai hubungan antar item. Hasil dari proses data mining ini dapat digunakan sebagai rekomendasi kebijakan baru bagi BKKBN untuk menekan angka kelahiran bayi yang tinggi. Kata Kunci : Faktor Kelahiran Bayi, Data Mining, Association Rules, algoritma apriori, Support dan Confidence.