Anna Hendri Soleliza Jones
Department Of Informatic, Faculty Of Industrial Engineering Universitas Ahmad Dahlan

Published : 7 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : IJISTECH

Case Based Reasoning using K-Nearest Neighbor with Euclidean Distance for Early Diagnosis of Personality Disorder Anna Hendri Soleliza Jones; Cicin Hardiyanti
IJISTECH (International Journal of Information System and Technology) Vol 5, No 1 (2021): June
Publisher : Sekolah Tinggi Ilmu Komputer (STIKOM) Tunas Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30645/ijistech.v5i1.111

Abstract

A personality disorder is a condition of a person with an extreme personality that causes the sufferer to have unhealthy and different thoughts patterns and behavior from other people. The personality disorders discussed in this study consisted of 110 diseases with 300 case data and 68 symptoms. Based on Basic Health Research (Riskesdas) 2018 data, it shows that more than 19 million people aged 15 years and over were affected by mental-emotional disorders. Data from the Statistics Indonesia in 2019 that the population of Indonesia is around 265 million people, while according to the Indonesian Clinical Psychologist Association, the number of verified professional psychologists is 1,599 clinical psychologists out of a total membership of 2,078 as of January 2019. However, this figure does not meet the standards of the World Health Organization (WHO), which is that psychologists serve 30 thousand people. This shows that Indonesia still lacks around 28,970 psychologists. The unequal distribution of professional psychologists has made psychologists need a long time to provide a diagnosis because of the number of patients being inversely proportional to the availability of psychologists in Indonesia. Moreover, there is not enough patient knowledge about the symptoms they feel. This study aims to produce a system for diagnosing personality disorders. This study is a case based reasoning to solve problems that have occurred in previous cases using K-Nearest Neighbor to classify data based on the closest distance using the calculation of the Euclidean Distance. Algorithm testing for the system used the Confusion Matrix test. Based on the results of testing data in the 60 case data using K-nearest Neighbor and the calculation of the Euclidean Distance with a score of K=3, it is known that 60 data have 100% similarity to cases with a personality disorder. Meanwhile, testing new cases with 10 case data that were not in the knowledge base was also conducted showing that 9 cases had 100% similarity to the previous case, while another case had 90% similarity to the previous case.
Fp-Growth Algorithm For Searching Book Borrowing Transaction Patterns And Study Program Suitability Lisna Zahrotun; Anna Hendri Soleliza Jones
IJISTECH (International Journal of Information System and Technology) Vol 5, No 5 (2022): February
Publisher : Sekolah Tinggi Ilmu Komputer (STIKOM) Tunas Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30645/ijistech.v5i5.180

Abstract

The current development of data has reached a sizeable amount. This is due to the development of the world of information technology which consists of data in it. One technique that can handle abundant data is data mining. Data mining methods are widely used to perform large amounts of data analysis. In the academic field, analysis can be used to determine the patterns of students and lecturers. Whereas in library transactions, analysis can be carried out to determine the patterns of existing book borrowing. This is done to determine the tendency of students with certain study programs to borrow any uku transactions. In this study, the aim of this research is to analyze the patterns of borrowing books from the Ahmad Dahlan University library, which includes borrowing transaction data and the book owner's study program. In addition, in this study, a percentage analysis of the suitability of the book borrower study program and the book owner's study program was also carried out. The stages in this research include data collection, data cleaning, data selection, data transformation, searching for association patterns using the FP-Growth method and pattern evaluation. The test used in this research is the lift ratio. The results of this study are publications in international journals that are in the draft process. Apart from that, the results of this study provide information on the analysis of patterns of lending books in libraries using the FP-Growth method. The resulting pattern is 103 patterns with a support count value of 5 and a confident 10% with the 2 itemset rule, this means that the level of book borrowing is still low. While the results of the analysis of the suitability of books in the study program with the borrower were 31% in accordance with the study program, namely Pharmacy and Public Health Sciences, meaning that there were 69% of students who borrowed books from the library that were not in accordance with their study program.