Venkatesan Rajinikanth
Department of Electronics and Instrumentation Engineering, St. Joseph’s College of Engineering, Chennai, India

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Design of PID Controller for Magnetic Levitation System using Harris Hawks Optimization Seifedine Kadry; Venkatesan Rajinikanth
Jurnal Ilmiah Teknik Elektro Komputer dan Informatika Vol 6, No 2 (2020): December
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/jiteki.v6i2.19167

Abstract

In most real-time industrial systems, optimal controller implementation is very essential to maintain the output based on the reference input. The controller design problem becomes a complex task when the real-time system model becomes greatly non-linear and unstable. The proposed research aims to design the finest PID controller for the unstable Magnetic Levitation System (MLS) using the Harris Hawks Optimization (HHO) algorithm. The MLS is a highly unstable electro-mechanical system and hence the design of the controller is a complex task. The proposed work implements one Degree of Freedom (1DOF) and 2DOF PID for the system. In this work, the essential controller is designed with a two-step process; (i) Initial optimization search to find the P-controller (Kp) gain to stabilize the system and (ii) Tuning the integral (Ki) and derivative (Kd) gains to reduce the deviation between the reference input and MLS output. The performance of the proposed controller is validated with the servo and regulatory operations and the result of this study confirms that the proposed method helps to get better error value and time domain specifications compared to other available methods.