Dwiyanto Dwiyanto
Departemen Teknik Elektro dan Teknologi Informasi, Fakultas Teknik Universitas Gadjah Mada

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

PENGUKURAN BLOK WINDOW TERBAIK BERDASARKAN MSE UNTUK SEGMENTASI CITRA SIDIK JARI BERBASIS MEAN DAN VARIANS Dwiyanto Dwiyanto; Agus Bejo; Risanuri Hidayat
Prosiding SNST Fakultas Teknik Vol 1, No 1 (2016): PROSIDING SEMINAR NASIONAL SAINS DAN TEKNOLOGI 7 2016
Publisher : Prosiding SNST Fakultas Teknik

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (287.399 KB)

Abstract

Segmentasi citra sidik jari merupakan langkah yang dilakukan untuk memisahkan bagian objek dengan bagian background. Paper ini akan melakukan segmentasi citra sidik jari dengan cara membagi citra sidik jari dengan 6 ukuran blok window (3x3, 6x6, 10x10, 15x15, 20x20, 25x25) yang tidak saling tumpang tindih untuk tiap citra sidik jari. Segmentasi dilakukan berdasarkan mean dan varians tiap blok window. Pengukuran hasil segmentasi citra sidik jari dilakukan dengan memberikan noise titik putih (salt) dan titik hitam (pepper) untuk tiap citra sidik jari hasil segmentasi. Citra sidik jari yang terdapat noise titik putih (salt) dan titik hitam (pepper) kemudian diperbaiki dengan median filter dengan ukuran kernel yang berbeda dan dihitung nilai MSE masing-masing citra. Hasil eksperimen menunjukkan  bahwa ukuran blok window 15x15 mempunyai nilai rata-rata MSE  terkecil yaitu 37,17. Kata kunci: Blok Window, Mean, MSE, Sidik jari, Varians