N. Widiasmadi
Jurusan Teknik Mesin Fakultas Teknik Universitas Wahid Hasyim Semarang

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

PERI KUALITATIF PERSAMAAN DIFFERENSIAL TERPILAH UNTUK GELOMBANG KEJUT SUNAMI N. Widiasmadi
JURNAL ILMIAH MOMENTUM Vol 3, No 1 (2007)
Publisher : Universitas Wahid Hasyim

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36499/jim.v3i1.672

Abstract

Gadunov provides insight to the general solution of Riemann problem by considering the shock as a  local phenomena,and treated accordingly as  local problem. Two dimensional exact analytical Riemann problems may be very difficult to solve. Another approach is to split the two dimensional wave problem into 1D Riemann problem, where the analytical solution is already known. To apply 1D Riemann problem into  two dimensional wave problems, one has to discretize to the flow domain, into discrete non-overlapping elements, control volume  or  cells. If the elements are the control volumes, then we can employ the finite volume discretization scheme. Based on the schemes the hydrodynamic problems can be solved elegantly by transforming the domain into non-overlapping control volume elements and treated each elements as the local Riemann problem. This can be carried out by transforming the global physical coordinates into local one, foe every discrete flow elements (the control volume or cell), where the direction of flow axis is aligned with the fluxdirection. The problem is then solved as hydrodynamic fluxes,  F, crossing the cells interfaces. The  disadvantage  of this scheme is that the  control volume  —representing gravitation and friction—is elimated from the equation, and therefore it seems to be not realistic. However, integration of the characteristics with the source included, it can be concluded that the source influence can be ade as small as possible by applying the proper aselection of the time step (Abbot, 1979). In this case, we are treating the problem as solving the Riemann quasi-invariants. The  influence of neglecting the source term will be reflected in the amount of flux. If this influence is positive, the flux will be less than if the source term is negative, i.e the source term is sink which decreases the momentum content, otherwise it is a source which increases which increases the momentum flux. The influence must be persistence, e.g in dissipative flow regime, neglecting the source term Riemann equation will result in persistencelarger momentum flux compare to the real flow. This error may be less or greater than numerical error. (see Numerical test # 1). Therefore, when applied to the discretisized river sistem, the persistence rules will not be always reproduced in the simulation result. This alternating positive and negative effect will be reflected by plotting the numerical test value against the laboratory of field value or by complete numerical value without neglecting the gravitational and friction effects (see simulation test of Osher scheme in Kissimmee river , Florida, USA). Keywords : local problem, control volume, control volume, control volume, shock wave
PENURUNAN PERSAMAAN ST. VENANT UNTUK DASAR BERBAGAI KASUS DINAMIKA FLUIDA N. Widiasmadi
JURNAL ILMIAH MOMENTUM Vol 2, No 2 (2006)
Publisher : Universitas Wahid Hasyim

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36499/jim.v2i2.663

Abstract

The shallow water wave’s equation represents rapid unsteady flow frequently attended by shock waves. For shock phenomena, the influence of bottom friction may be assumed marginal, as the bottom width where shock arises is relatively very thin compared to the scale of the flow domain. However, the energy loss across the shock is significant. This energy loss is attributed to the internal stresses within the very thin infinitesimal shock interface. For practical computation, the contribution of the internal friction may be incorporated in the wall friction, in other words the internal stresses can be represented as Manning frictional resistance. Frictions either wall friction, surface friction, or internal friction between fluid particles are the sources or sinks of momentum.  Strong simplification of modeling of the free surface shallow flows is necessary for the computer simulation. The material on the basis of shallow water models is essential, even considering a numerical method of any kind,  similar to most of the shock-capturing numerical methods on the utilisation of  local Riemann problem solution, both for the exact or approximate. However the role of the Riemann problem is wider. The Riemann problem can be useful in theoretical studies  of simple shalow water models; it can also be used in conjunction with other numerical solution. This research deals with shock-capturing, finite volume numerical  methods, particular devoted to the details of numerical methods of the shock-capturing type. Some hypothetical tests are modeled as a shallow water wave equation, which therefore can be cast as Riemann Problem,  solved by utilizing   the Godunov’s type solution. Finite volume methods of the Godunov type are used for the purpose of solving numerically the time-dependent, non-linear shallow  water equations.  Key words : shallow water, homogeneous, shock, sources, sinks, Riemann   problem, finite volume,  shock-capturing, Godunov’s type.
PENYELESAIAN RIEMAN UNTUK MODEL BENDUNG RUNTUH N. widiasmadi
JURNAL ILMIAH MOMENTUM Vol 2, No 1 (2006)
Publisher : Universitas Wahid Hasyim

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36499/jim.v2i1.656

Abstract

Hampiran Riemann merupakan pendekatan untuk dapat melihat fenomena aliran gelombang permukaan dengan cara merambatkan informasi di arah sepanjang garis karakteristiknya. Secara ilmu  hidrostatik, pemecahan Riemann     (Riemann solver ) berawal dari soal Riemann   (Riemann problem), yang merupakan masalah kejut dalam aliran mampat, aliran tak bertahanan (compressible inviscid flow) yang mana G.F. Bernhard Riemann mencoba menyelesaikannya pada tahun 1858. Persoalan ini dalam pustaka aerodinamika dikenal sebagai  soal tabung kejut  (shock tube problem) di mana alirannya dimodelkan sebagai persamaan Euler (Soegandar, 2004).  Bentuk persamaan ini memungkinkan penyelesaian langsung secara  analitik eksak dari aliran tak bertahanan dan tak-tunak. Gagasan dasar dari persoalan Riemann kemudian  dikembangkan kurang lebih 101 tahun kemudian oleh S.K. Godunov (1959) dengan cara penyelesaian analitik, di mana persamaan Euler hanya berlaku untuk daerah setempat (local region ) dari medan aliran (Toro, 1999). Dengan merakit kepingan-kepingan penyelesaian analitik eksak maka diperoleh sintesis seluruh medan aliran. Operasionalisasi dari falsafah Godunov ini adalah dengan membagi-bagi medan fisik aliran menjadi sel-sel yang saling merapat, sehingga persamaan Euler dapat diselesaikan secara analitik eksak untuk masing-masing unsur. Parameter aliran dilambangkan sebagai vektor arus  U  dan dianggap tetap nilainya di dalam sel. Dengan demikian pada antar muka dua unsur yang berdekatan dapat memiliki nilai parameter arus U  yang berbeda. Dalam lingkup fisika aliran, perbedaan yang kecil ini merupakan  kejut-kejut lembut  (infinitesimal shock or wavelets) yang dapat dimuluskan, tetapi bila terjadi perbedaan yang besar  akan menandai adanya kehadiran kejut. Dengan demikian falsafah Godunov sangat berbeda dengan falsafah numerik yang telah dikenal sebelumnya di mana persamaan St. Venant dikepingkan sebagai selisih hingga, unsur hingga atau volume hingga, di mana seluruh penyelesaian dari persamaan diferensial atau integral pengatur sekaligus menyapu seluruh ruang aliran.   Kata kunci : Riemann solver , Riemann problem, local region, vektor arus U, shock