Christian Lauw
Jurusan Teknik Informatika, Universitas Surabaya

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Penerapan Aplikasi RapidMiner Untuk Prediksi Nilai Tukar Rupiah Terhadap US Dollar Dengan Metode Linear Regression Vincentius Riandaru Prasetyo; Hamzah Lazuardi; Aldo Adhi Mulyono; Christian Lauw
Jurnal Nasional Teknologi dan Sistem Informasi Vol 7, No 1 (2021): April 2021
Publisher : Jurusan Sistem Informasi, Fakultas Teknologi Informasi, Universitas Andalas

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/TEKNOSI.v7i1.2021.8-17

Abstract

Kurs adalah sebuah nilai mata uang suatu negara terhadap mata uang lain. Oleh karena itu, kurs memiliki dua komponen utama yaitu mata uang domestik, dan mata uang asing. Mata uang asing yang sering digunakan sebagai patokan nilai tukar adalah US Dollar. Di berbagai negara termasuk Indonesia, nilai tukar mata uang terhadap US Dollar sangat mempengaruhi perekonomian yang berjalan, terutama harga jual suatu barang. Selain itu, nilai tukar mata uang juga berpengaruh terhadap keputusan seseorang untuk berinvestasi, baik saham, emas, atau yang lain. Penelitian ini mencoba memprediksi nilai tukar rupiah terhadap US Dollar dengan memanfaatkan aplikasi RapidMiner. Aplikasi tersebut merupakan aplikasi freeware yang didalamnya terdapat berbagai macam metode pengolahan data yang siap untuk digunakan secara mudah. Penelitian ini menerapkan metode linear regression yang terdapat pada aplikasi RapidMiner. Metode tersebut akan mengolah data-data yang sudah ada sebelumnya untuk membentuk suatu persamaan yang akan digunakan untuk prediksi nilai tukar rupiah terhadap US Dollar. Atribut yang digunakan untuk melakukan prediksi adalah nilai pembukaan, perubahan, tertinggi, dan terendah dari nilai tukar rupiah terhadap US Dollar. Data yang digunakan pada penelitian ini berasal dari situs investing.com. Dari hasil pengujian yang dilakukan, didapatkan akurasi metode linear regression sebesar 95% dengan nilai threshold adalah 30 rupiah. Selain itu, nilai root mean squared error yang didapatkan sebesar 14,951.