Claim Missing Document
Check
Articles

Found 9 Documents
Search

SISTEM PAKAR UNTUK MENGETAHUI GANGGUAN DEPRESI SOMATOGENIK DENGAN METODE HYBRID (FORWARD CHAINING DAN CERTAINTY FACTOR) Pradani Ayu Widya Purnama; Teri Ade Putra; Riandana Afira
Jurnal Ipteks Terapan Vol 13, No 4 (2019): JIT
Publisher : LLDIKTI Wilayah X

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22216/jit.2019.v13i4.5864

Abstract

Sistem Pakar secara umum adalah sistem yang berusaha mengadopsi pengetahuan manusia ke komputer, agar komputer dapat menyelesaikan  masalah seperti yang biasa dilakukan oleh para ahli. Pada depresi somatogenik ini dianggap bahwa faktor-faktor jasmaniah berperan dalam timbulnya depresi, terbagi dalam beberapa tipe Depresi organic dan Depresi somatic. Sistem Pakar menggunakan metode Hybrid (Forward Chaining dan Certainty Factor) yang diterapkan dalam penelitian ini untuk menentukan berapa persentase gangguang depresi yang diderita oleh pasien. Sistem Pakar ini diimplementasikan menggunakan bahasa pemrograman php
Pembangunan Aplikasi Multimedia Sebagai Media Analisa Kesiapan Kerja Lulusan Perguruan Tinggi Pada Sektor Perbankan Syariah Aulia Fitrul Hadi; Pradani Ayu Widya Purnama; Sepsa Nur Rahman
Seminar Nasional Teknologi Informasi Komunikasi dan Industri 2018: SNTIKI 10
Publisher : UIN Sultan Syarif Kasim Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (313.092 KB)

Abstract

Di dunia perbankan, penerimaan karyawan baru penuh dengan banyak keraguan dan pertimbangan. Hal ini disertai dengan kondisi kesiapan pekerjaan lulusan universitas yang saat ini tidak efektif, misalnya di banyak bagian layanan pelanggan masih banyak yang belum tahu bagaimana menjadi layanan pelanggan yang baik, sehingga HRD harus melakukan lebih banyak pelatihan untuk rekrutan baru.  biaya yang panjang dan substansial untuk pelatihan. Dalam hal ini multimedia memungkinkan calon lulusan perguruan tinggi untuk belajar terlebih dahulu tentang dasar-dasar pengetahuan yang ada di perbankan. Pengguna dapat melihat foto, memindahkan video, atau animasi, dan mendengar suara stereo, dan rekaman suara, atau musik. Dengan elemen multimedia ini, multimedia interaktif diharapkan dapat membantu calon lulusan perguruan tinggi dengan mudah dan praktis mempelajari konsep sains. Dengan kemajuan teknologi yang tersedia, media informasi bukan hanya manual dan manual, tetapi kemudian beralih ke multimedia digital. Penelitian ini menggunakan konsep multimedia dengan menggunakan aplikasi pendukung seperti Adobe Flash yang dapat membantu penciptaan pengetahuan dan pelatihan media berbasis multimedia. Dan hasil dari pembangunan aplikasi ini menunjukan 69 persen mempengaruhi kualitas seleksi calon karyawan baru di sektor perbankan syariah.
Multimedia Sebagai Media Analisa Tingkat Kesiapan Calon Wisudawan untuk Memasuki Dunia Kerja Ruang Lingkup Perbankan Syariah Aulia Fitrul Hadi; Pradani Ayu Widya Purnama; Sepsa Nur Rahman
Jurnal KomtekInfo Vol. 5 No. 2 (2018): Komtekinfo
Publisher : Universitas Putra Indonesia YPTK Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (529.82 KB) | DOI: 10.35134/komtekinfo.v5i2.18

Abstract

Rekrutmen pegawai di dunia perbankan memang penuh dengan masalah. Mulai dari latar belakang yang berbeda, pengetahuan yang tidak merata, kebutaan terhadap dunia kerja dan berbagai hal lainnya. Hal tersebut dapat diatasi dengan menggunakan teknologi. Salah satunya adalah teknologi multimedia. Dengan Menggunakan multimedia, calon pegawai akan disuguhi pengetahuan dasar perbankan yaitu: berupa video, animasi, gambar dan suara. Presentasi ini membuktikan bahwa 80% dapat meningkatkan kualitas kandidat yang diuji. Dengan hasil ini, pengembangan sumber daya manusia (SDM) Perusahaan dapat merekomendasikan kandidat yang tepat untuk pimpinan perusahaan.
Optimization Analysis Model Determining PNMP Mandiri Loan Status Based on Pearson Correlation Teri Ade Putra; Pradani Ayu Widya Purnama; Riandana Afira; Yesri Elva
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 6 No 6 (2022): Desember 2022
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v6i6.4469

Abstract

PNPM Mandiri is an organization engaged in financing small and medium enterprises in the community. The problem that always occurs is an error in determining the loan status resulting in bad credit. This study aims to present a classification analysis model for determining loan status at PNPM Mandiri. The classification analysis model was built using the Perceptron algorithm artificial neural network. The analysis model will later be optimized using the Person Correlation (PC) method to measure the accuracy of the variables used. The research dataset is based on historical data from the last 2 years as many as 67 data samples. The analysis variables consist of Business Type (X1), Loan Amount (X2), Collateral (X3), Income (X4), and Expenses (X5). The results of the analysis show that the model built can provide optimal classification results. These results can be seen based on the results of variable measurements using the PC method indicating that variable X2 has no significant relationship. With the results of these measurements, the performance of the artificial neural network presents maximum results in determining loan status. Overall, the results of this study can provide an effective analytical model as well as an alternative solution for determining loan status.
COUNTING GAME APPLICATION FOR KINDERGARTEN CHILDREN Teri Ade Putra; Raja Ayu Mahessya; Yesri Elva; Pradani Ayu Widya Purnama
Jurnal Ipteks Terapan (Research Of Applied Science And Education ) Vol. 15 No. 4 (2021): Jurnal Ipteks Terapan ( Research of Applied Science and Education )
Publisher : Lembaga Layanan Pendidikan Tinggi Wilayah X

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (762.094 KB) | DOI: 10.22216/jit.v%vi%i.793

Abstract

Problems The development of Information Technology plays an important role in human life. With the development of Information Technology, humans can easily get information and humans can easily carry out daily activities with the help of existing technology. Technology brings people to see the outside world further, open their minds to think, and build creativity to create new things, one of the technologies that is currently developing very rapidly is smartphone-based technology, especially Android. Many android applications are very helpful at this time such as health applications, transportation and there are also educational games. Educational games can make it easier to learn, sometimes when learning someone will be faced with conditions where it is difficult to understand the lesson, so with the educational game it is hoped that it can help users understand the lessons in the game, besides that educational games are a very fun learning tool for students. , because students will be happier and easier to understand by playing while learning
Metode Multi Attribute Utility Theory (MAUT) untuk Sistem Pendukung Keputusan Pemilihan Mobil Bekas Rahmatia Wulan Dari; Sopi Sapriadi; Nadya Alinda Rahmi; Pradani Ayu Widya Purnama; Ilmawati
Jurnal KomtekInfo Vol. 10 No. 2 (2023): Komtekinfo
Publisher : Universitas Putra Indonesia YPTK Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35134/komtekinfo.v10i2.378

Abstract

Transportasi merupakan kebutuhan primer dalam memindahkan barang dan orang. Kendaraan pribadi, seperti mobil dan sepeda motor, menjadi preferensi bagi sebagian orang karena kenyamanan dan kemewahan yang ditawarkan. Namun, proses penjualan mobil bekas seringkali menghadapi kendala dalam pencatatan manual. Penelitian ini bertujuan untuk mengembangkan sistem pendukung keputusan menggunakan metode Multi Attribute Utility Theory (MAUT) dalam transaksi penjualan mobil bekas. Sistem ini diharapkan dapat mempermudah dan meningkatkan efektivitas serta efisiensi proses penjualan mobil bekas. Metode MAUT ini memungkinkan penilaian relatif terhadap setiap atribut mobil bekas yang relevan, sehingga memudahkan penjual dalam memilih mobil bekas yang sesuai dengan preferensi dan kebutuhan konsumen. Dataset yang digunakan dalam penelitian ini mencakup informasi tentang mobil bekas, termasuk harga, kondisi mesin, usia, warna, dan atribut lainnya. Data ini digunakan sebagai dasar dalam pengambilan keputusan pemilihan mobil bekas terbaik. Hasil penelitian menunjukkan bahwa sistem pendukung keputusan dengan metode MAUT dapat membantu penjual dalam memilih mobil bekas yang paling sesuai dengan kebutuhan konsumen. Penggunaan sistem ini mempercepat proses pencatatan penjualan mobil bekas, meningkatkan akurasi data, dan memudahkan analisis serta pelaporan. Sistem pendukung keputusan yang dikembangkan dapat menjadi alat yang efektif dan efisien dalam membantu penjual dalam mengambil keputusan yang tepat dalam pemilihan mobil bekas yang akan dijual kepada konsumen.
Sales and Inventory Prediction with the EOQ Method based on Single Exponential Smoothing Forecasting Alfin Andika Putra; Vicky Ariandi; Pradani Ayu Widya Purnama
Journal of Computer Scine and Information Technology Volume 9 Issue 2 (2023): JCSITech
Publisher : Universitas Putra Indonesia YPTK Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35134/jcsitech.v9i2.66

Abstract

Along with the development of the era where technology is increasingly sophisticated as it is today, the needs are also increasing. Science and Technology also experienced drastic progress. Forecasting forecasting is a method for making estimates of future data by involving the use of past data in a systematic model form, and the forecasting method used is Single Exponential Smoothing. Planning for this EOQ method can minimize the occurrence of out of stock so that processes in a business are not disrupted and are able to save costs incurred due to the efficiency of inventory at the place of business concerned. Application of Supply Chain Management with data mining systems on CV. Amifa Keluarga Lestari can simplify the management of raw materials by implementing an SCM system which can reduce excess stock purchases. With the Single Exponential Smoothing method, you can predict the number of best sales for the following month in one period by looking at the smallest error. The calculation results show that the most economical order in one order is 1291 kilograms, and the total storage cost is Rp. 154,919 per Kilogram
Determining Marketing Strategy to Support Customer Relationship Management with the Apriori Algorithm Dheatri Agrema; Febri Hadi; Pradani Ayu Widya Purnama
Journal of Computer Scine and Information Technology Volume 9 Issue 2 (2023): JCSITech
Publisher : Universitas Putra Indonesia YPTK Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35134/jcsitech.v9i2.70

Abstract

Business competition has forced companies to be more selective in implementing their marketing strategies. This increasingly rapid technological development is an aspect that can be utilized in achieving ease of doing everything. The development of this technology can have a good impact on business people, Customer Relationship Management (CRM) is one of the business strategies to meet the goals of the store. To fulfill these objectives, the authors conducted an analysis of sales transaction data using assistive devices such as data mining. Data mining is part of analytical Customer Relationship Management (CRM) which is used to find patterns in data. By applying the Apriori Algorithm or Association Rule to achieve this business strategy. The Apriori algorithm is a method for finding relationship patterns between one or more items in a dataset. By using sales transaction data at the Rahmat Elektronik Store, it is possible to find out which products are in great demand by customers every time they shop at the Rahmat Elektronik Store. The results of applying the Apriori Algorithm or Association Rule use Minimum Support 5% and Minimum Confidance 50%
Naive Bayes Algorithm Classification for Predicting Graduation Rate Pradani Ayu Widya Purnama; Nurmaliana Pohan
JURNAL TEKNOLOGI DAN OPEN SOURCE Vol. 7 No. 2 (2024): Jurnal Teknologi dan Open Source, December 2024
Publisher : Universitas Islam Kuantan Singingi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36378/jtos.v7i2.3866

Abstract

Classification refers to the process of identifying a model or function that clarifies or differentiates concepts or categories of data, with the goal of predicting the class of an object. Naïve Bayes is a machine learning technique that employs probability computations. In this case study, various algorithms are used for modeling classification, and the naïve bayes algorithm is applied to examine the graduation rate. By utilizing this method, accuracy is assessed, which allows for an analysis based on criteria such as School Major, First Choice of College, Second Choice of College, Average Graduation Value, and Graduation Information. The outcome of the computation utilizing the Naïve Bayes Algorithm (Information Systems | Option 1) > (Information Engineering | Option 2) is 53.32% > 0%, which allows us to infer that the First Option of Information Systems and the Second Option of Informatics Engineering yield an Average Score of 75.00, resulting in a Graduation Information status of PASS, thus, Information Pass (Option 1-Information Systems).