This Author published in this journals
All Journal Semesta Teknika
Berli P Kamiel
Universitas Muhammadiyah Yogyakarta

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Deteksi Cacat Bantalan Bola Pada Pompa Sentrifugal Menggunakan Spektrum Getaran Berli P Kamiel; Mulyani Mulyani; Sunardi Sunardi
Semesta Teknika Vol 20, No 2 (2017): NOVEMBER 2017
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/st.v20i2.3543

Abstract

One of the common fault in the centrifugal pump is faulty bearing. Bearings play a very important role for smooth rotation of a shaft. A bearing condition must be constantly monitored to ensure top performance of a pump. Therefore, a method is needed to detect an early defect in the bearings. One of the most widely used methods for bearing faults detection is based on the vibration analysis. Vibration analysis can detect a defect in a bearing without having to disassemble the machine. Furthermore, and it is fast and easy to be implemented. This study aims to develop a fault detection method on the ball bearing using spectrum analysis by applying envelope analysis. This research uses experimental method with three bearings conditions i.e. normal (no fault), outer race fault, and inner race fault. The type of ball bearings used are self aligning double row bearings. The vibration signal from each of bearing condition is taken from the centrifugal pump vibration test rig and measured using accelerometer sensor which is acquired directly with DAQ and then processed into Matlab. The analysis gives the result of frequency spectrum and envelope spectrum. This study concludes that the high amplitude on the frequency that coincide with the frequency of Ball Pass Frequency Outer Race (BPFO) and Ball Pass Frequency Inner Race (BPFI) make an indication of damage to the bearing on the outer and inner race respectively. The envelope spectrum gives better results as compared to the result of the frequency spectrum. This is because the high amplitude of low frequency generated from other components is blocked and removed using a high-pass filter. Consequently, it becomes easier to detect a low amplitude of high frequency vibration signal from a faulty bearing.
Sifat-sifat Tarik dan Flexural Komposit Serat Sabut Kelapa Unidireksional/Poliester Sudarisman Sudarisman; Berli P Kamiel; Slamet Rahadi
Semesta Teknika Vol 17, No 2 (2014): NOVEMBER 2014
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/st.v17i2.425

Abstract

The purpose of this study is to investigate the tensile and flexural properties of unidirectional coconut fiber/polyester composite materials, and to describe their failure modes. Specimens were cut from fiber/polyester composite plates containing various fiber contents. Materials being used in this study are coconut fiber that was previously alkali-treated and polyester resin matrix. Whilst tensile testing was carried out in accordance with the ASTM D3039 standard, flexural testing was based on the ASTM D790 standard. Failure surfaces of the representative specimens were then observed under an optical microscope, and their digital photo macrographs were captured for image analysis in order to describe their respective fiber distribution pattern and to determine their respective actual fiber volume fraction, Vf, by means of an open source software called ImageJ. It was found out that the actual Vf of the four composite plates being produced were 10.7%, 17.6%, 27.4% and 40.5%. It was revealed that while tensile strength increases with the increase of Vf, while failure strain, modulus elasticity and flexural strength decreases. The average highest tensile strength, tensile failure strain, and tensile modulus of elasticity were found being 30.01 MPa at Vf = 40.5%, 0.027 mm/mm at  = 0%, and 1.47 GPa at Vf = 0%, respectively. The average highest flexural strength, failure strain and modulus of elasticity were observed being 153.92 MPa at Vf = 10.7%, 0.0358 mm/mm at Vf = 0%, and 3.242 GPa at Vf =10.7%, respectively. It was observed that specimens were failed by fiber pull out and debonding.