Umri Erdiansyah
STMIK Triguna Dharma

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : CESS (Journal of Computer Engineering, System and Science)

Comparison of Accuracy in Naïve Bayes and Random Forests in Classification of Liver Disease Ahmadi Irmansyah Lubis; Umri Erdiansyah; Rosma Siregar
CESS (Journal of Computer Engineering, System and Science) Vol 7, No 1 (2022): January 2022
Publisher : Universitas Negeri Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (415.045 KB) | DOI: 10.24114/cess.v7i1.28888

Abstract

Pada penelitian ini bertujuan untuk melakukan komparasi terhadap metode Naïve Bayes dan Random Forest dalam klasifikasi data pasien penyakit liver. Adapun data pengujian yang digunakan yaitu Indian Liver Patient Dataset (ILPD) yang diperoleh dari UCI Machine Learning Repository. Dataset tersebut memiliki 583 record data, 10 kriteria, dan 1 variable kelas serta dengan jumlah kelas sebanyak 2 kelas atribut, serta data set tersebut berjenis multivariate. Terdapat beberapa tahapan preprocessing yang dilakukan, antara lain normalisasi data yang diujikan, selanjutnya dilakukan analisis klasifikasi menggunakan metode naïvebayes dan random forest. Berdasarkan hasil pengujian yang dilakukan dalam memperoleh nilai akurasi perhitungan klasifikasi menggunakan Confusion Matrix, maka metode Random Forest memperoleh hasil yang terbaik yaitu dengan peroleh akurasi sebesar 70.60 % bila dibandingkan dengan Naïve Bayes yang hanya memperoleh akurasi sebesar 55.80 %. Sehingga Random Forest memiliki performa kinerja yang lebih unggul dalam perolehan akurasi yang dihasilkan dalam klasifikasi penyakit liver.