Wirawan Wirawan
Department of Electrical Engineering, Institut Teknologi Sepuluh Nopember (ITS), Surabaya

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

PARTICLE FILTER-BASED OBJECT TRACKING USING JOINT FEATURES OF COLOR AND LOCAL BINARY PATTERN HISTOGRAM FOURIER Dewa Made Wiharta; Wirawan Wirawan; Gamantyo Hendrantoro
Jurnal Ilmiah Kursor Vol 8 No 2 (2015)
Publisher : Universitas Trunojoyo Madura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28961/kursor.v8i2.64

Abstract

Object tracking is defined as the problem of estimating object location in image sequences. In general, the problems of object tracking in real time and complex environtment are affected by many uncertainty. In this research we use a sequensial Monte Carlo method, known as particle filter, to build an object tracking algorithm. Particle filter, due to its multiple hypotheses, is known to be a robust method in object tracking task. The performances of particle filter is defined by how the particles distributed. The role of distribution is regulated by the system model being used. In this research, a modified system model is proposed to manage particles distribution to achieve better performance. Object representation also plays important role in object tracking. In this research, we combine color histogram and texture from Local Binary Pattern Histogram Fourier (LBPHF) operator as feature in object tracking. Our experiments show that the proposed system model delivers a more robust tracking task, especially for objects with sudden changes in speed and direction. The proposed joint feature is able to capture object with changing shape and has better accuracy than single feature of color or joint color texture from other LBP variants.