Muhammad Fajrul Falah
Politeknik Elektronika Negeri Surabaya

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

INTELLIGENT SYSTEM FOR AUTOMATIC CLASSIFICATION OF FRUIT DEFECT USING FASTER REGION-BASED CONVOLUTIONAL NEURAL NETWORK (FASTER R-CNN) Hasan Basri; Iwan Syarif; Sritrusta Sukaridhoto; Muhammad Fajrul Falah
Jurnal Ilmiah Kursor Vol 10 No 1 (2019)
Publisher : Universitas Trunojoyo Madura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28961/kursor.v10i1.187

Abstract

In 2018, the Indonesian fruit exports increased by 24% from the previous year. The surge in demand for tropical fruits from non-tropical countries is one of the contributing factors for this trend. Some of these countries have strict quality requirements – the poor level quality control of fruit is an obstacle in achieving greater export yield. This is because some exporters still use manual sorting processes performed by workers, hence the quality standard varies depending on the individual perception of the workers. Therefore, we need an intelligent system that is capable of automatic sorting according to the standard set. In this research, we propose a system that can classify fruit defects automatically. Faster R-CNN (FRCNN) architecture proposed as a solution to detect the level of defect on the surface of the fruit. There are three types of fruit that we research, its mangoes (sweet fragrant), lime, and pitaya fruit. Each fruit divided into three categories (i) Super, (ii) middle, (iii) and fruit defects. We exploit join detection and video tracking to calculate and determine the quality fruit in real-time. The datasets are taken in the field, then trained using the FRCNN Framework using the Tensorflow platform. We demonstrated that this system can classify fruit with an accuracy level of 88% (mango), 83% (lime), and 99% (pitaya), with an average computation cost of 0.0131 m/s. We can track and calculate fruit sequentially without using additional sensors and check the defect rate on fruit using the video streaming camera more accurately and with greater ease.
Comparison of cloud computing providers for development of big data and internet of things application Muhammad Fajrul Falah; Yohanes Yohanie Fridelin Panduman; Sritrusta Sukaridhoto; Arther Wilem Cornelius Tirie; M. Cahyo Kriswantoro; Bayu Dwiyan Satria; Saifudin Usman
Indonesian Journal of Electrical Engineering and Computer Science Vol 22, No 3: June 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v22.i3.pp1723-1730

Abstract

The improved technology of big data and the internet of things (IoT) increases the number of developments in the application of smart city and Industry 4.0. Thus, the need for high-performance cloud computing is increasing. However, the increase in cloud computing service providers causes difficulties in determining the chosen service provider. Therefore, the purpose of this study is to make comparisons to determine the criteria for selecting cloud computing services following the system architecture and services needed to develop IoT and big data applications. We have analyzed several parameters such as technology specifications, model services, data center location, big data service, internet of things, microservices architecture, cloud computing management, and machine learning. We use these parameters to compare several cloud computing service providers. The results present that the parameters able to use as a reference for choosing cloud computing for the implementation of IoT and big data technology.