Claim Missing Document
Check
Articles

Found 2 Documents
Search

The effect of drying temperature on the characteristics of biodegradable plastic from Cassava pulp and Chitosan Adina Widi Astuti; Agus Yulianto; Upik Nurbaiti
Journal of Natural Sciences and Mathematics Research Vol 7, No 1 (2021): June
Publisher : Faculty of Science and Technology, Universitas Islam Negeri Walisongo Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21580/jnsmr.2021.7.2.8389

Abstract

Conventional plastics made from polyethylene (PE), polypropylene (PP), polyvinylchloride (PVC), polystyrene, and poly (ethylene terephthalate) are difficult to decompose. Bioplastics can reduce the amount of toxic waste generated from biological materials other than petroleum.  The combination of cassava pulp and chitosan can be used as a candidate for the manufacture of biodegradable plastics. The optimal drying temperature can produce biodegradable plastics that have good quality. The method used to determine the effect is the mechanical properties test with ASTM D-638M standard and degradation test. The results of this study obtained 6 samples of biodegradable plastic with variations in temperature A=40˚C, B=50˚C, C=60˚C, D=70˚C, E=80˚C and F=90˚C. From the results of the mechanical properties test, the tensile strength values of each sample are A = 0,84 MPa, B = 1,78 MPa, C = 2,24 MPa, D = 1,58 MPa, E = 1,23 MPa and F =0,57 MPa. While the percent elongation value of each sample is A = 11,09%, B = 21,62%, C = 30,25%, D = 15,94%, E = 13% and F = 7,2%. The drying temperature in the process of making biodegradable plastics can affect its mechanical properties, namely the higher the drying temperature used, the lower the tensile strength value and the percent elongation, this is because high temperatures can damage the chemical structure and evaporated sorbitol which serves to increase flexibility. The higher the drying temperature also causes the biodegradable plastic to take longer to degrade. Sample A with the lowest temperature degraded the fastest for 28 days, while sample F with the highest temperature degraded the fastest for 46 days.©2021 JNSMR UIN Walisongo. All rights reserved.
Design and build a mechanical energy conservation law KIT with Arduino microcontroller Adina Widi Astuti; Zayyinul Mushthofa; Sulhadi Sulhadi
Journal of Natural Sciences and Mathematics Research Vol 7, No 2 (2021): December
Publisher : Faculty of Science and Technology, Universitas Islam Negeri Walisongo Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21580/jnsmr.2021.7.2.8639

Abstract

Tools as media play an important role in learning physics to explain concepts, so that students can more easily build mastery of physics material and develop their skills. This study aims to design and realize a physics learning tool. The method used is research and development (Research and Development). This learning tool is in the form of a plane where the direction of the object's trajectory varies can move up, down, and is accompanied by a slope setting (30˚, 45˚, 60˚ or 90˚). Equipped with a speed output setting program based on 3 points whose speed will be measured and the distance between the points can be changed. Its function is to understand and prove the law of conservation of mechanical energy, understand the relationship between potential energy and kinetic energy experienced by objects and determine the speed of objects and their height position. This learning tool is expected to attract students' interest in learning physics. The design of this KIT Law of Conservation of Mechanical Energy can prove the conservation of mechanical energy. When an object is moving downwards, the object's height decreases but its velocity increases. On the other hand, if the object is moving upwards, the height of the object will increase, but the velocity of the object will decrease. This tool still has a relative error rate of 23.92% in free fall motion, 31.87% in falling motion on an inclined plane, and 32.79% in vertical upward motion.©2021 JNSMR UIN Walisongo. All rights reserved.