Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : EMITTER International Journal of Engineering Technology

Performance Analysis of The Effect on Insertion Guide Vanes For Rectangular Elbow 900 Cross Section Setyo Nugroho; Achmad Arifudin Hidayatulloh
EMITTER International Journal of Engineering Technology Vol 4 No 2 (2016)
Publisher : Politeknik Elektronika Negeri Surabaya (PENS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1875.344 KB) | DOI: 10.24003/emitter.v4i2.157

Abstract

The use of elbow or curved pipe in the installation of piping has a loss of pressure (pressure drop) which could lead the power of pump that drive the fluid and decrease the energy efficiency of the system. The pressure drop is caused by the curved shape of the elbow that cause pressure on the outer wall (outter) larger and blocking off the pace of the fluid, and flow pressure losses caused by friction, flow separation and secondary flow. A method that can be used to reduce flow separation and pressure loss in the elbow is by the insertion guide vane. The test model in the form of rectangular elbow 900  with a radius ratio (rc/Dh) = 1.1249 without using a guide vane and number of guide vane insertion one until three guide vanes. With Reynolds number ReDh ≈ 8.6 × 104. The velocity inlet is uniform, the measured variable is static pressure. Static pressure was measured using an inclined manometer. With variation the number of guide vane gives a more effect on the value of pressure drop, the largest pressure drop until 123.35% compared to that without guide vane. The velocity distribution profile on the outlet side becomes more uniform. The magnitude of this pressure drop occurs as a result of the increased flow friction and its secondary flow become smaller.
Improve of Water Flow Acceleration in Darrieus Turbine Using Diffuser NACA 11414 2,5R Setyo Nugroho; Arrad Ghani Safitra; Teguh Hady Aribowo; Mochammad Arief Julianto
EMITTER International Journal of Engineering Technology Vol 6 No 1 (2018)
Publisher : Politeknik Elektronika Negeri Surabaya (PENS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1354.908 KB) | DOI: 10.24003/emitter.v6i1.236

Abstract

Indonesia has potential hydro energy around 70000 MW which has been used around 6% (3529 MW). One of the development constraint is the stream velocity in Indonesian rivers is relative low. It causes bigger turbine dimension needed to achieve power which is desired.  An alternative is to utilize adiffuser, which is a device that could accelerate the fluid flow in order to give more energy to the turbine. Based on contiunity equation, diffuser can increase velocity by ratio of cross-section area. It can be  used to achieve expected power as long as it is not too much reduce the pressure. This research is conducted in 0.566 m/s of water velocity with Darrieus turbine with hydrofoil NACA 0018, height 0.74 m, radius 0.17 m, chord 0.11 m and 3 number of blades. The performance (Cp) was determined by numerical and experimental without and with diffuser NACA 11414 2.5R for variation of angle 8o, 16o, and 20o. Both of those result showed that the best performance of NACA 11414 2,5R is on angle 16o which numerically has stream velocity 0,91 m/s of water and 7 times of Cp, while experimentally has 0,891 m/s of water velocity and 3,16 times of Cp. This diffuser could improve the power generated by the turbine and increase the turbine efficiency.