Thangavel Swaminathan Sivakumaran
Dept. of EEE, Sasurie College of Engineering, Tirupur, Tamil Nadu, India

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Bearing/Incipient/Open Phase Fault Detection and Diagnosis of Multi-Phase Induction Motor Drives Equipped By GBDTI2HO Technique Annamalai Balamurugan; Thangavel Swaminathan Sivakumaran
EMITTER International Journal of Engineering Technology Vol 9 No 1 (2021)
Publisher : Politeknik Elektronika Negeri Surabaya (PENS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24003/emitter.v9i1.491

Abstract

In this paper, a hybrid system is performed with fault detection and diagnosis on multi-phase induction motor (IM). The proposed method is hybrid of integrated Harris Hawk optimization (IHHO) and gradient boosting decision trees (GBDT) thus called the GBDTI2HO method. Here, additional operators are included in this paper to improve HHO’s search behaviour namely crossover and mutation. Distorted waveforms are generated by different frequency patterns to indicate the time domain frequency as an assessment of failure. For this signal representation, the discrete wavelet transformation (DWT) is suggested. It extracts the characteristics and forwards them to IHHO technique to form the possible data sets. After the generation of the data set, GBDT classifies the ways of failure reached as winding of stator in multi-phase IM. The implementation of the proposed system is compared with existing systems, such as ANN, S-Transform and GBDT. The proposed method is executed on MATLAB/Simulink work platform to demonstrate the successfulness of proposed system, statistical measures are determined, as precision, sensitivity and specificity, mean median and standard deviation. For demonstrating the successfulness of proposed system, statistical measures are determined as precision, sensitivity, specificity, mean median as well as standard deviation. In 50 trails the proposed method, 0.98 for accuracy, 0.96 for specificity, 1.60 for recall as well as 0.97 for precision. In 100 trail the proposed method, 0.96 for accuracy, 0.93 for specificity, 0.87 for recall as well as 0.99 for precision.