Muthu Mariappan H
Research Scholar, Computer Science and Engineering Department, National Engineering College, Kovilpatti, Tamil Nadu, India

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Indian Sign Language Recognition through Hybrid ConvNet-LSTM Networks Muthu Mariappan H; Dr Gomathi V
EMITTER International Journal of Engineering Technology Vol 9 No 1 (2021)
Publisher : Politeknik Elektronika Negeri Surabaya (PENS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24003/emitter.v9i1.613

Abstract

Dynamic hand gesture recognition is a challenging task of Human-Computer Interaction (HCI) and Computer Vision. The potential application areas of gesture recognition include sign language translation, video gaming, video surveillance, robotics, and gesture-controlled home appliances. In the proposed research, gesture recognition is applied to recognize sign language words from real-time videos. Classifying the actions from video sequences requires both spatial and temporal features. The proposed system handles the former by the Convolutional Neural Network (CNN), which is the core of several computer vision solutions and the latter by the Recurrent Neural Network (RNN), which is more efficient in handling the sequences of movements. Thus, the real-time Indian sign language (ISL) recognition system is developed using the hybrid CNN-RNN architecture. The system is trained with the proposed CasTalk-ISL dataset. The ultimate purpose of the presented research is to deploy a real-time sign language translator to break the hurdles present in the communication between hearing-impaired people and normal people. The developed system achieves 95.99% top-1 accuracy and 99.46% top-3 accuracy on the test dataset. The obtained results outperform the existing approaches using various deep models on different datasets.