Rangga Arya Pamungkas
Telkom University

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Implementasi Genetic Algorithm dalam Model ARIMA untuk Memprediksi Observasi Time Series Rangga Arya Pamungkas; Indwiarti Indwiarti; Aniq Atiqi Rohmawati
Indonesia Journal on Computing (Indo-JC) Vol. 4 No. 3 (2019): December, 2019
Publisher : School of Computing, Telkom University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34818/INDOJC.2019.4.3.353

Abstract

Nilai harga saham selalu berubah-ubah dan berfluktuasi setiap harinya. Untuk menghadapi masalah mengenai ketidakpastian harga saham, perlu dilakukan suatu peramalan time series untuk memprediksi harga saham di masa mendatang. Pada penelitian ini, metode yang digunakan untuk memprediksi harga saham adalah metode Autoregressive Moving Average (ARIMA). Untuk meningkatkan akurasi dari prediksi harga saham, akan diimplementasikan Genetic Algorithm (GA) pada model ARIMA terbaik yang didapatkan dari proses ARIMA. Hasil dari penelitian ini menunjukkan bahwa prediksi harga saham dengan menggunakan model ARIMA (1,1,1) memiliki nilai Root Mean Square Error (RMSE) sebesar 418.1314. Sedangkan hasil prediksi harga saham dengan mengimplementasikan GA pada model ARIMA (1,1,1) dengan 600 generasi, 1200 generasi, 1800 generasi, 2400 generasi, dan 3000 generasi masing-masing memiliki nilai RMSE berturut-turut sebesar 5827.738, 1319.903, 1080.704, 563.7984, dan 371.0107. Hasil yang didapat menunjukkan bahwa pengimplementasian GA pada ARIMA dengan 3000 generasi dapat meningkatkan akurasi prediksi harga saham, yaitu dengan memiliki nilai RMSE sebesar 371.0107.Kata Kunci: GA, Harga Saham, Model ARIMA, Prediksi, RMSE