Irfan Tri Handoko
Telkom University

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Klasifikasi Gender dan Usia berdasarkan Suara Pembicara Menggunakan Hidden Markov Model Irfan Tri Handoko; Suyanto Suyanto
Indonesia Journal on Computing (Indo-JC) Vol. 4 No. 3 (2019): December, 2019
Publisher : School of Computing, Telkom University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34818/INDOJC.2019.4.3.375

Abstract

Klasifikasi usia-genderberdasarkan suara sangat berguna dalam perkenalan pidato dan dalam pengenalan emosi. Klasifikasi genderjuga telah diterapkan dalam pengenalan wajah, peringkasan video, penentuan tingkat izin yang berbeda untuk kelompok umur yang berbeda, dan lainnya. Pengelompokan usia yang berbeda dibagi menjadi tiga kelompok: anak, muda, menengah, dan senior berdasarkan rentang usia tertentu. Penelitian ini berfokus pada klasifikasi usia-gender berdasarkan suara pembicara menggunakan gabungan Gaussian Mixture Modeldan Hidden Markov Model(GMM-HMM). Pertama, dilakukan pembangunan vektor ciri menggunakan Mel-Frequency Cepstrum Coefficient (MFCC). Selanjutnya, dilakukan pelatihan untuk menghasilkan model akustik untuk semua penutur (pria dan wanita dari berbagai usia) di dalam basisdata pelatihan. Terakhir, HMM diterapkan untuk mendeteksi genderdan kelompok usia. Pada penelitian ini, basisdata suara diambil dari situs Common Voice, yang berisi banyak posting blog, buku-buku lama, film, dan pidato publik lainnya. Hasil eksperimen menunjukkan bahwa model GMM-HMM yang telah dibangun mampu melakukan klasifikasi usia-genderdengan akurasi hingga 96,4%. Model ini dapat diperbaiki dengan pengaturan parameter secara lebih presisi dan penggunaan dataset yang lebih besar.Kata Kunci: Klasifikasi, Mel-Frequency Cepstrum Coefficient, Acoustic Models, Gaussian Mixture Model, Hidden Markov Model