Ekky Wicaksana
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Classification Model of Consumer Question about Motorbike Problems by Using Naïve Bayes and Support Vector Machine Ekky Wicaksana; Danang Triantoro Murdiansyah; Isman Kurniawan
Indonesia Journal on Computing (Indo-JC) Vol. 6 No. 2 (2021): September, 2021
Publisher : School of Computing, Telkom University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34818/INDOJC.2021.6.2.561

Abstract

The motorbike plays an important role in supporting daily activity. The motorbike is known as one of the transportation modes that is frequently used in Indonesia. The number of motorbikes used in Indonesia is continuously increasing time by time. Hence, the occurrence of motorbike problems can affect community activity and disturb the economic condition in society. Since the problem of the motorbike can occur at any time, a prevention action is required by providing an online consultation platform. However, a classification model is required to handle a wide range of questions about the motorbike problem. By classifying those questions into a specific class of problems, the solution can be delivered to the consumer faster. In this study, we developed prediction models to classify consumer questions. The data set was collected from consumer questions regarding motorbike problems that are commonly occurring. The model was developed using two machine learning algorithms, i.e., Naïve Bayes and Support Vector Machine (SVM). Text vectorization was performed by using the n-gram and term frequency-inverse document frequency (TF-IDF) method. The results show that the SVM model with the uni-trigram model performs better with the value of accuracy and F-measure, which are 0.910 and 0.910, respectively.