Mohamad Ivan Fanany
Universitas Indonesia

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Fuzzy Latent-Dynamic Conditional Neural Fields for Gesture Recognition in Video Intan Nurma Yulita; Mohamad Ivan Fanany; Aniati Murni Arymurthy
International Journal on Information and Communication Technology (IJoICT) Vol. 2 No. 2 (2016): December 2016
Publisher : School of Computing, Telkom University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21108/IJOICT.2016.22.124

Abstract

With the explosion of data on the internet led to the presence of the big data era, so it requires data processing in order to get the useful information. One of the challenges is the gesture recognition the video processing. Therefore, this study proposes Latent-Dynamic Conditional Neural Fields and compares with the other family members of Conditional Random Fields. To improve the accuracy, these methods are combined by using Fuzzy Clustering. From the result, it can be concluded that the performance of Latent-Dynamic Conditional Neural Fields are  lower than Conditional Neural Fields but higher than the Conditional Random Fields and Latent-Dynamic Conditional Random Fields. Also, the combination of Latent-Dynamic Conditional Neural Fields and Fuzzy C-Means Clustering has the highest. This evaluation is tested in a temporal dataset of gesture phase segmentation.
Sketch Plus Colorization Deep Convolutional Neural Networks for Photos Generation from Sketches Vinnia Kemala Putri; Mohamad Ivan Fanany
Proceeding of the Electrical Engineering Computer Science and Informatics Vol 4: EECSI 2017
Publisher : IAES Indonesia Section

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (4979.984 KB) | DOI: 10.11591/eecsi.v4.1040

Abstract

In this paper, we introduce a method to generate photos from sketches using Deep Convolutional Neural Networks (DCNN). This research proposes a method by combining a network to invert sketches into photos (sketch inversion net) with a network to predict color given grayscale images (colorization net). By using this method, the quality of generated photos is expected to be more similar to the actual photos. We first artificially constructed uncontrolled conditions for the dataset. The dataset, which consists of hand-drawn sketches and their corresponding photos, were pre-processed using several data augmentation techniques to train the models in addressing the issues of rotation, scaling, shape, noise, and positioning. Validation was measured using two types of similarity measurements: pixel- difference based and human visual system (HVS) which mimics human perception in evaluating the quality of an image. The pixel- difference based metric consists of Mean Squared Error (MSE) and Peak Signal-to-Noise Ratio (PSNR) while the HVS consists of Universal Image Quality Index (UIQI) and Structural Similarity (SSIM). Our method gives the best quality of generated photos for all measures (844.04 for MSE, 19.06 for PSNR, 0.47 for UIQI, and 0.66 for SSIM).
Combining Deep Belief Networks and Bidirectional Long Short-Term Memory Intan Nurma Yulita; Mohamad Ivan Fanany; Aniati Murni Arymurthy
Proceeding of the Electrical Engineering Computer Science and Informatics Vol 4: EECSI 2017
Publisher : IAES Indonesia Section

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (307.775 KB) | DOI: 10.11591/eecsi.v4.1051

Abstract

This paper proposes a new combination of Deep Belief Networks (DBN) and Bidirectional Long Short-Term Memory (Bi-LSTM) for Sleep Stage Classification. Tests were performed using sleep stages of 25 patients with sleep disorders. The recording comes from electroencephalography (EEG), electromyography (EMG), and electrooculography (EOG) represented in signal form. All three of these signals processed and extracted to produce 28 features. The next stage, DBN Bi-LSTM is applied. The analysis of this combination compared with the DBN, DBN HMM (Hidden Markov Models), and Bi-LSTM. The results obtained that DBN Bi-LSTM is the best based on precision, recall, and F1 score.