This Author published in this journals
All Journal Jurnal Gaussian
Lutfiah Maharani Siniwi
Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

QUERY EXPANSION RANKING PADA ANALISIS SENTIMEN MENGGUNAKAN KLASIFIKASI MULTINOMIAL NAÏVE BAYES (Studi Kasus : Ulasan Aplikasi Shopee pada Hari Belanja Online Nasional 2020) Lutfiah Maharani Siniwi; Alan Prahutama; Arief Rachman Hakim
Jurnal Gaussian Vol 10, No 3 (2021): Jurnal Gaussian
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/j.gauss.v10i3.32795

Abstract

Shopee is one of the e-commerce sites that has many users in Indonesia. Shopee provides various attractive promos on special days such as National Online Shopping Day on December 12. Shopee site was a complete error on December 12, 2020. Complaints and opinions of Shopee users were also shared through various media, one of them was Google Play Store. Sentiment analysis was used to see the user's response to the Shopee’s incident. Sentiment analysis results can be extracted to obtain information regarding positive or negative reviews from Shopee users. Sentiment analysis was performed using the Multinomial Naïve Bayes classification. the simplest method of probability classification, but it is sensitive to feature selection so that the amount of data is determined by the results of feature selection Query Expansion Ranking. The algorithm that has the highest accuracy and kappa statistic is the best algorithm in classifying Shopee’s users sentiment. The results showed that the classification performance using Multinomial Naïve Bayes with 80% of the features (terms) which have the highest Query Expansion Ranking value was obtained at the accuracy and kappa statistics values are 89% and 77.62%. This means that Multinomial Nave Bayes has a good performance in classifying reviews and the number of features used affects the performance results obtained.