This Author published in this journals
All Journal Jurnal Gaussian
Fadhilla Atansa Tamardina
Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

ANALISIS SENTIMEN REVIEW APLIKASI CRYPTOCURRENCY MENGGUNAKAN ALGORITMA MAXIMUM ENTROPY DENGAN METODE PEMBOBOTAN TF, TF-IDF DAN BINARY Fadhilla Atansa Tamardina; Hasbi Yasin; Dwi Ispriyanti
Jurnal Gaussian Vol 11, No 1 (2022): Jurnal Gaussian
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/j.gauss.v11i1.34004

Abstract

Pandemi COVID-19 yang belum berhenti menyebabkan kondisi ekonomi Indonesia kian memburuk. Masyarakat yang terkena dampak pemotongan upah akibat pandemi harus mencari cara untuk mendapatkan pendapatan pasif. Salah satu cara untuk mendapatkan hal tersebut adalah berinvestasi. Cryptocurrency adalah salah satu instrumen investasi berbasis aplikasi yang memiliki return tinggi. Aplikasi Pintu  adalah aplikasi pertama yang menyediakan fasilitas mobile apps  pada penggunanya. Aplikasi yang dirilis pada tahun 2020 ini sudah memiliki banyak ulasan yang diberikan oleh penggunanya. Ulasan ini dibutuhkan untuk mengetahui apakah ulasan yang diberikan bersifat positif atau negatif. Analisis sentimen pada aplikasi Pintu dipilih untuk melihat sentimen pengguna yang akan dibagi menjadi dua kelas sentimen yaitu positif dan negatif. Klasifikasi dilakukan dengan algoritma Maximum Entropy dengan perbandingan metode pembobotan kata Term Frequency (TF), Term Frequency-Inverse Document Frequency (TF-IDF) dan Binary. Model klasifikasi terbaik dilihat berdasarkan nilai akurasi yang dievaluasi dengan 5-Fold Cross Validation. Hasil klasifikasi model Maximum Entropy dengan Binary memiliki tingkat akurasi sebesar 83,21% sedangkan hasil klasifikasi model Maximum Entropy dengan Term Frequency hanya sebesar 83,01% dan model Maximum Entropy dengan Term Frequency-Inverse Document Frequency hanya sebesar 83,20%. Hal ini menunjukkan bahwa tidak terdapat perbedaan yang signifikan pada model algoritma Maximum Entropy dengan metode pembobotan kata Term Frequency (TF), Term Frequency-Inverse Document Frequency (TF-IDF) dan Binary. Keywords: Cryptocurrency, Binary, Term Frequency, Term Frequency-Inverse Document Frequency, Maximum Entropy