This Author published in this journals
All Journal Jurnal Gaussian
Rachmah Dewi Kusumah
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

PERBANDINGAN METODE K–MEANS DAN SELF ORGANIZING MAP (STUDI KASUS: PENGELOMPOKAN KABUPATEN/KOTA DI JAWA TENGAH BERDASARKAN INDIKATOR INDEKS PEMBANGUNAN MANUSIA 2015) Rachmah Dewi Kusumah; Budi Warsito; Moch. Abdul Mukid
Jurnal Gaussian Vol 6, No 3 (2017): Jurnal Gaussian
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (400.884 KB) | DOI: 10.14710/j.gauss.v6i3.19346

Abstract

Cluster analysis is a process of separating the objects into groups, so that the objects that belong to the same group are similar to each other and different from the other objects in another group. In this study used two method to classify data of  district / city in Central Java based on indicators of Human Development Index (HDI) 2015 are K-Means and Self Organizing Map (SOM) with the number of groups as much as two to seven. Furthermore, the results of both methods were compared using the Davies-Bouldin Index (DBI) values to determine which method is better. Based on the research that has been conducted found that the K-Means (K=4) method works better than SOM (K=2) to classify district / city in Central Java based on indicators of Human Development Index (HDI) as evidenced by the value of the Davies-Bouldin Index (DBI) on K-Means (K=4) of 0.786 is smaller than the value at SOM (K=2) Davies-Bouldin Index (DBI) which is equal to 0.893. Keywords: clustering, HDI, K-Means, SOM, DBI