This Author published in this journals
All Journal Jurnal Gaussian
Inas Husna Diarsih
Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

PEMODELAN PRODUKSI BAWANG MERAH DI JAWA TENGAH DENGAN MENGGUNAKAN HYBRID AUTOREGRESSIVE INTEGRATED MOVING AVERAGE – ADAPTIVE NEURO FUZZY INFERENCE SYSTEM Inas Husna Diarsih; Tarno Tarno; Agus Rusgiyono
Jurnal Gaussian Vol 7, No 3 (2018): Jurnal Gaussian
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (666.622 KB) | DOI: 10.14710/j.gauss.v7i3.26661

Abstract

Red onion is one of the strategic horticulture commodities in Indonesia considering its function as the main ingredients of the basic ingredients of Indonesian cuisine. In an effort to increase production to supply national necessary, Central Java as the main center of red onion production should be able to predict the production of several periods ahead to maintain the balance of national production. The purpose of this research is to get the best model to forecast the production of red onion in Central Java by ARIMA, ANFIS, and hybrid ARIMA-ANFIS method. Model accuracy is measured by the smallest RMSE and AIC values. The results show that the best model to modeling red onion production in Central Java is obtained by hybrid ARIMA-ANFIS model which is a combination between SARIMA ([2], 1, [12]) and residual ARIMA using ANFIS model with input et,1, et,2 on the grid partition technique, gbell membership function, and membership number of 2 that produce RMSE 12033 and AIC 21.6634. While ARIMA model yield RMSE 13301,24 and AIC 21,89807 with violation of assumption. And the ANFIS model produces RMSE 14832 and AIC 22,0777. This shows that ARIMA-ANFIS hybrid method is better than ARIMA and ANFIS.Keywords: production of red onion, ARIMA, ANFIS, hybrid ARIMA-ANFIS