This Author published in this journals
All Journal Jurnal Gaussian
Alifah Zahlevi
Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

PEMODELAN KECEPATAN ANGIN DI KOTA SEMARANG MENGGUNAKAN ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM (ANFIS) Alifah Zahlevi; Alan Prahutama; Abdul Hoyyi
Jurnal Gaussian Vol 8, No 3 (2019): Jurnal Gaussian
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (493.913 KB) | DOI: 10.14710/j.gauss.v8i3.26709

Abstract

Semarang city is the one of the strategic areas located in the middle of the north coast of Java that has a tropical climate with the high humidity and temperature, so it often causes a high rainfall and strong wind. So that is way Semarang city is ever sustained the extreme weather like a Tropical Storm. Since January 2016 until 2017 there are 34 cases of Tornado and 24 incidents of fallen trees because of the gale. For helping the people to be allert the effect of the strong winds can be done by predicting the average of wind velocity by using Adaptive Neuro-Fuzzy Inference System (ANFIS) method which can predict the climate change that do not require the assumption of white noise and normal residual distribution. In addition ANFIS is a group of neural network with input that has been fuzzied on the first or second layer, but the weight of the artificial neural is not fuzzied. The identification result of stationaries obtained the plot of PACF on the first and second lag, with the result that these lag which will be a input variable on ANFIS model. The result of ANFIS by using cluster FCM, the third total membership show the smallest percentage of RMSE in-sample is 0,0048 on the first lag, and the smallest percentage of RMSE out-sample is 0,008 on the ANFIS model with the input lag 1 and three cluster. Keywords : the average of wind velocity, ANFIS, RMSE