This Author published in this journals
All Journal Jurnal Gaussian
Aulia Desy Deria
Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

REGRESI ROBUST ESTIMASI-M DENGAN PEMBOBOT ANDREW, PEMBOBOT RAMSAY DAN PEMBOBOT WELSCH MENGGUNAKAN SOFTWARE R Aulia Desy Deria; Abdul Hoyyi; Mustafid Mustafid
Jurnal Gaussian Vol 8, No 3 (2019): Jurnal Gaussian
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (583.535 KB) | DOI: 10.14710/j.gauss.v8i3.26682

Abstract

Robust regression is one of the regression methods that robust from effect of outliers. For the regression with the parameter estimation used Ordinary Least Squares (OLS), outliers can caused assumption violation, so the estimator obtained became bias and inefficient. As a solution, robust regression M-estimation with Andrew, Ramsay and Welsch weight function can be used to overcome the presence of outliers. The aim of this study was to develop a model for case study of poverty in Central Java 2017 influenced by the number of unemployment, population, school participation rate, Human Development Index (HDI), and inflation. The result of estimation using OLS show that there is violation of heteroskedasticity caused by the presence outliers. Applied robust regression to case study proves robust regression can solve outliers and improve parameter estimation. The best robust regression model is robust regression M-estimation with Andrew weight function. The influence value of predictor variables to poverty is 92,7714% and MSE value is 370,8817. Keywords: Outliers, Robust Regression, M-Estimator, Andrew, Ramsay, Welsch