Claim Missing Document
Check
Articles

Found 3 Documents
Search

Proses difusi relativistik melalui persamaan langevin dan fokker-planck Arista Romadani; Muhammad Farchani Rosyid
Jurnal Teknosains Vol 11, No 2 (2022): June
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/teknosains.63229

Abstract

Brownian motion theory is always challenging how to describe diffusion phenomena with the main issue is how to extend the classical theory of Brownian motion to the special relativity framework. In this study, we formulated dynamics and distribution of a Brownian particle in relativistic framework by using Langevin and Fokker-Planck equation. By representing Brownian particle dynamics by Langevin equation, the velocity curves  were dependent on the presence of viscous friction coefficient (heat bath), and were used generalized in special relativity theory, A relativistic Langevin equation reduces to the classical theory at low velocities. Likewise, the distribution of Brownian particles is represented  as a stationary solution of the relativistic Fokker-Planck equation. From numerical results, we found that the probability density in the relativistic Fokker-Planck equation for  was reduced to the standard Fokker-Planck equation in Netownian classical theory. For  the calculation result showed that the Hanggi-Klimontovich approach has a consistent result to the relativistic Maxwell distribution. This work could open a promising interpretation to formulate the diffusion phenomena into general relativity theory.
Solusi Persamaan Dirac untuk Fermion dengan Model Potensial Penghalang Medan Elektromagnetik Arista Romadani; Erika Rani
Jurnal Fisika FLUX Vol 17, No 2 (2020): Jurnal Fisika Flux: Jurnal Ilmiah Fisika FMIPA Universitas Lambung Mangkurat
Publisher : Lambung Mangkurat University Press

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (850.064 KB) | DOI: 10.20527/flux.v17i2.8105

Abstract

The solution of the Dirac equation in the presence of the electromagnetic field on the one-dimensional barrier potential is studied. The energy spectrum and the eigenfunction of the Dirac equation obtained by solving the Dirac equation and we introduced annihilation and creation operators for the Hamiltonian has an identical form in the harmonic oscillator. Regions I and III separated by a potential barrier characterized by the gap energy with the eigenfunctions as a sinusoidal function, and region II has the form of an exponent function.  We found the eigenfunction involved positive and negative energy moves exponentially when passed through a barrier.
Pengaruh Medan Elektromagnet terhadap Partikel Dirac dan Klein-Gordon dalam Potensial Penghalang Periodik Satu Dimensi Arista Romadani; Erika Rani
JPSE (Journal of Physical Science and Engineering) Vol 4, No 1 (2019): JPSE (Journal of Physical Science and Engineering)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Suatu partikel Bosonik dan Dirac bermassa nol yang beraksi pada potensial penghalang satu dimensi telah dikaji secara mekanika kuantum relativistik dengan menggunakan persamaan Klein-Gordon dan persamaan Dirac. Persamaan ini selanjutnya mengalami modifikasi akibat pengaruh medan elektromagnetik yang dihadirkan dan pendekatan matriks telah diaplikasikan untuk mendapatkan representasi energi dan spinor eigennya. Terkhusus partikel Dirac, Hamiltonian Dirac memiliki bentuk yang identik dengan osilator harmonik sehingga representasi energi merupakan perpanjangan dari energi osilator harmonik. Selain itu fungsi eigennya melibatkan energi positif dan energi negatif yang bergerak secara eksponensial ketika melewati penghalang. DOI: http://dx.doi.org/10.17977/um024v4i12019p008