Hamidreza Mostafaei
Department of Statistics, Tehran North Branch, Islamic Azad University, Tehran, Iran.

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Predict The Spread of COVID-19 in Iran with A SEIR Model Shirin Kordnoori; Mahboobe Sadat Kobari; Hamidreza Mostafaei
IPTEK The Journal for Technology and Science Vol 32, No 1 (2021)
Publisher : IPTEK, LPPM, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j20882033.v32i1.7227

Abstract

The current coronavirus disease 2019 (COVID-19) outbreak has recently been declared a pandemic and spread over 200 countries and territories. Forecasting the long-term trend of the COVID-19 epidemic can help health authorities determine the transmission characteristics of the virus and take appropriate prevention and control strategies beforehand. Previous studies that solely applied traditional epidemic models or machine learning models were subject to underfitting or overfitting problems. This paper designed a predictive model based on the mathematical model Susceptible-Exposed-Infective-Recovered (SEIR). SEIR is represented by a set of differential-algebraic equations incorporated with machine learning techniques to fit the data reported to estimate the spread of the COVID-19 epidemic in long-term in the Islamic Republic of Iran up to the end of July 0f 2020. This paper reduced R0 after a certain amount of days to account for containment measures and used delays to allow for lagging official data. Two evaluation criteria, R2 and RMSE, had used in this research which estimates the model on officially reported confirmed cases from different regions in Iran. The results proved the model’s effectiveness in simulating and predicting the trend of the COVID-19 outbreak. Results showed the integrated approach of epidemic and machine learning models could accurately forecast the long-term trend of the COVID-19 outbreak.
The Efficacy of Choosing Strategy with General Regression Neural Network on Evolutionary Markov Games Shirin Kordnoori; Hamidreza Mostafaei; Mohammadmohsen Ostadrahimi; Saeed Agha Banihashemi
IPTEK The Journal for Technology and Science Vol 32, No 1 (2021)
Publisher : IPTEK, LPPM, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j20882033.v32i1.7074

Abstract

Nowadays, Evolutionary Game Theory which studies the learning model of players,has attracted more attention than before. These Games can simulate the real situationand dynamic during processing time. This paper creates the Evolutionary MarkovGames, which maps players’ strategy-choosing to a Markov Decision Processes(MDPs) with payoffs. Boltzmann distribution is used for transition probability andthe General Regression Neural Network (GRNN) simulating the strategy-choosing inEvolutionary Markov Games. Prisoner’s dilemma is a problem that uses the methodand output results showing the overlapping the human strategy-choosing line andGRNN strategy-choosing line after 48 iterations, and they choose the same strate-gies. Also, the error rate of the GRNN training by Tit for Tat (TFT) strategy is lowerthan similar work and shows a better res