Nurrani Mustika Dewi
Prodia Clinical Laboratory Jl. Cisangkuy No.2, Bandung

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Mitochondrial Dysfunction in Stem Cell Aging Anna Meiliana; Nurrani Mustika Dewi; Andi Wijaya
The Indonesian Biomedical Journal Vol 7, No 1 (2015)
Publisher : The Prodia Education and Research Institute (PERI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18585/inabj.v7i1.18

Abstract

BACKGROUND: Regardless of the precise underlying molecular mechanisms, the fundamental defining manifestation of aging is an overall decline in the functional capacity of various organs to maintain baseline tissue homeostasis and to respond adequately to physiological needs under stress. There is an increasingly urgent need for a more complete understanding of the molecular pathways and biological processes underlying aging and age-related disorders.CONTENT: Mitochondria constitute the most prominent source of adenosine triphosphate (ATP) and are implicated in multiple anabolic and catabolic circuitries. In addition, mitochondria coordinate cell-wide stress responses and control non-apoptotic cell death routines. The involvement of mitochondria in both vital and lethal processes is crucial for both embryonic and postembryonic development, as well as for the maintenance of adult tissue homeostasis. Age-associated telomere damage, diminution of telomere ‘capping’ function and associated p53 activation have emerged as prime instigators of a functional decline of tissue stem cells and of mitochondrial dysfunction that adversely affect renewal and bioenergetic support in diverse tissues. Constructing a model of how telomeres, stem cells and mitochondria interact with key molecules governing genome integrity, ‘stemness’ and metabolism provides a framework for how diverse factors contribute to aging and age-related disorders.SUMMARY: Cellular senescence defined as an irreversible proliferation arrest promotes age-related decline in mammalian tissue homeostasis. The aging of tissue-specific stem cell and progenitor cell compartments is believed to be central to the decline of tissue and organ integrity and function in the elderly. Taken into consideration that the overwhelming majority of intracellular reactive oxygen species (ROS) are of mitochondrial origin, it is reasonable to posit that the elevated ROS production might be caused by alteration in mitochondrial function during senescence. It is likely that mitochondria and stem cells will remain at the forefront of aging research also for the next decade.KEYWORDS: aging, stem cell, mitochondrial biogenesis, mitophagy, senescence, telomeres
Molecular Regulation and Rejuvenation of Muscle Stem (Satellite) Cell Aging Anna Meiliana; Nurrani Mustika Dewi; Andi Wijaya
The Indonesian Biomedical Journal Vol 7, No 2 (2015)
Publisher : The Prodia Education and Research Institute (PERI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18585/inabj.v7i2.73

Abstract

BACKGROUND: Age-related muscle loss leads to lack of muscle strength, resulting in reduced posture and mobility and an increased risk of falls, all of which contribute to a decrease in quality of life. Skeletal muscle regeneration is a complex process, which is not yet completely understood.CONTENT: Skeletal muscle undergoes a progressive age-related loss in mass and function. Preservation of muscle mass depends in part on satellite cells, the resident stem cells of skeletal muscle. Reduced satellite cell function may contribute to the age-associated decrease in muscle mass. Recent studies have delineated that the aging process in organ stem cells is largely caused by age-specific changes in the differentiated niches, and that regenerative outcomes often depend on the age of the niche, rather than on stem cell age. It is likely that epigenetic states will be better define such key satellite cell features as prolonged quiescence and lineage fidelity. It is also likely that DNA and histone modifications will underlie many of the changes in aged satellite cells that account for age-related declines in functionality and rejuvenation through exposure to the systemic environment.SUMMARY: Skeletal muscle aging results in a gradual loss of skeletal muscle mass, skeletal muscle function and regenerative capacity, which can lead to sarcopenia and increased mortality. Although the mechanisms underlying sarcopenia remain unclear, the skeletal muscle stem cell, or satellite cell, is required for muscle regeneration. Decreased muscle stem cell function in aging has long been shown to depend on altered environmental cues, whereas the contribution of intrinsic mechanisms remained less clear. Signals in the aged niche were shown to cause permanent defects in the ability of satellite cells to return to quiescence, ultimately also impairing the maintenance of self-renewing satellite cells. Therefore, only anti-aging strategies taking both factors, the stem cell niche and the stem cells per se, into consideration may ultimately be successful.KEYWORDS: satellite cell, muscle, aging, niche, regenerations
Heterogeneous Stem Cells in Skin Homeostatis and Wound Repair Anna Meilana; Nurrani Mustika Dewi; Andi Wijaya
The Indonesian Biomedical Journal Vol 7, No 2 (2015)
Publisher : The Prodia Education and Research Institute (PERI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18585/inabj.v7i2.74

Abstract

BACKGROUND: The skin protects mammals from insults, infection and dehydration and enables thermoregulation and sensory perception. Various skin-resident cells carry out these diverse functions. Constant turnover of cells and healing upon injury necessitate multiple reservoirs of stem cells. The skin is a complex organ harboring several distinct populations of stem cells and a rich array of cell types. Advances in genetic and imaging tools have brought new findings about the lineage relationships between skin stem cells and their progeny. Such knowledge may offer novel avenues for therapeutics and regenerative medicine.CONTENT: In the past years, our view of the mechanisms that govern skin homeostasis and regeneration have markedly changed. New populations of stem cells have been identified that behave spatio-temporally differently in healthy tissues and in situations of damage, indicating that a great level of stem cell heterogeneity is present in the skin. There are believed to be distinct populations of stem cells in different locations. The lineages that they feed are normally constrained by signals from their local environment, but they can give rise to all epidermal lineages in response to appropriate stimuli. Given the richness of structures such as blood vessels, subcutaneous fat, innervation and the accumulation of fibroblasts under the upper parts of the rete ridges (in the case of human skin), it is reasonable to speculate that the microenvironment might be essential for interfollicular epidermal homeostasis. The bloodstream is probably the main source of long-range signals reaching the skin, and cues provided by the vascular niche might be essential for skin homeostasis.SUMMARY: A key function of the interfollicular epidermis is to act as a protective interface between the body and the external environment, and it contains several architectural elements that enable it to fulfill this function. All elements of the epidermis play active roles in regulating skin function, which might not have been anticipated from their role in maintaining skin integrity. Skin cell research benefits from the integration of complementary technologies and disciplines. How skin function is regulated and how it may be possible to intervene to treat a variety of skin conditions. Ultimately also impairing the maintenance of self-renewing satellite cells. Therefore, only anti-aging strategies taking both factors, the stem cell niche and the stem cells per se, into consideration may ultimately be successful.KEYWORDS: epidermis, hair follicle, fibroblast, skin stem cells, homeostasis, regeneration