Muhammad Hussein
Universitas Muhammadiyah Malang

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Prediksi Harga Minyak Dunia Dengan Metode Deep Learning Muhammad Hussein; Yufis Azhar
Fountain of Informatics Journal Vol 6, No 1 (2021): Mei
Publisher : Universitas Darussalam Gontor

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21111/fij.v6i1.4446

Abstract

AbstrakPeramalan seri waktu mendapatkan banyak perhatian dari berbagai penelitian. Salah satu data seri waktu yang barubah setiap periode tertentu adalah minyak bumi. Secara umum harga minyak bumi dipengarui oleh dua hal yaitu permintaan dan pendapatan. Pada penelitian ini menggunakan state-of-the-art model Deep Learning LSTM (Long Short Term Memory) untuk meramalkan harga minyak dalam periode tertentu. Metode ini digunakan karena arsitekturnya dapat beradaptasi dengan belajar non-linear dari data seri waktu yang kompleks. Dataset yang digunakan adalah data Brent Oil Price yang selalu di update setiap minggu. Dataset ini berisi harga minyak brent dari tahun 1987 sampai sekarang. Beberapa model yang dibangun terbukti dapat meramalkan harga minyak dengan baik. Model terbaik yang didapatkan dari penelitian ini memiliki RMSE 0,0186 dan MAE 0,013.Kata kunci: LSTM, deep learning, peramalan, harga minyak Abstract[Forecasting World Oil Price with Deep Learning Method] Time series forecasting gets a lot of attention from various studies. One of the time-series data that changes every certain period is petroleum. In general, the price of petroleum is affected by two things, namely demand and income. This research uses a state-of-the-art Deep Learning LSTM (Long Short-Term Memory) model to predict the oil price in a certain period. This method is used because the architecture can adapt to non-linear learning from complex time series data. The dataset used is the Brent Oil Price data, which is always updated every week. This dataset contains the price of Brent oil from 1987 to the present. The models that were built proved to be able to predict oil prices well. The best models obtained from this study have RMSE 0.0186 and MAE 0.013.Keywords: LSTM, deep learning, forecasting, oil price
Segmentasi Citra X-Ray Paru dengan Deep Learning Muhammad Hussein; Agus Eko Minarno; Yufis Azhar
Jurnal Repositor Vol 5 No 1 (2023): Februari 2023
Publisher : Universitas Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/repositor.v5i1.1498

Abstract

Image segmentation is one of the main things in the study of computer vision and image processing. One example is the processing of lung x-ray images to find out diseases in the lungs. U-net is a segmentation model that has been created to make it easier for someone to build a model for image segmentation. U-net can be used on any image. From its advantages, the researchers tried to use U-net in combination with Inception, MobileNet and EfficientNet to segment medical x-ray images of the lungs. The image is resized to 512 x 512 pixels. Augmentation that is done is zoom range, height shift, width shift and horizontal flip. Epoch is 200 and batch size is 4. The best scenario in this research is to use U-net Efficientnetb0 with dice value of 0.967, Jaccard of 0.937.