This Author published in this journals
All Journal Jurnal Informatika
Tri Rivanie
Ilmu Komputer, STMIK Nusa Mandiri Jakarta

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

ANALISIS SENTIMEN TERHADAP KINERJA MENTERI KESEHATAN INDONESIA SELAMA PANDEMI COVID-19 Tri Rivanie; Rangga Pebrianto; Taopik Hidayat; Achmad Bayhaqy; Windu Gata; Hafifah Bella Novitasari
Jurnal Informatika Vol 21, No 1 (2021): Jurnal Informatika
Publisher : IIB Darmajaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30873/ji.v21i1.2864

Abstract

The pandemic that occurred in Indonesia has not yet subsided and far from under control. Indonesian Ministry of Health is most appropriate person to responsible for providing an explanation of actual situation and extent to which state has handled it. However, he has rarely appeared in public lately to explain about handling of Covid-19 pandemic. In response, many people are pros and cons come to give their opinions and feedback. The increasing use of internet during pandemic, especially on social media, where one of them is Twitter, which is a means of expressing opinions. Posting tweets is a community habit to assess or respond to events, as well as represent public's response to an event, especially Ministry of Health steps and policies in handling and breaking chain of Covid-19 pandemic.The tweet posts were taken only in Indonesian-language and also related to performance of Government, especially Ministry of Health. After that, a label is given so that sentiment of tweets is known. To test results of these sentiments, an algorithm is used by comparing two methods of Support Vector Machine (SVM) and Naïve Bayes (NB). Validation was carried out using k-Fold Cross Validation to obtain an accuracy value. The results show that accuracy value for NB algorithm is 66.45% and SVM algorithm has a greater accuracy value of 72.57%. So it can be seen that SVM algorithm managed to get the best accuracy value in classifying positive comments and negative comments related to sentiment analysis towards Ministry of Health. Keywords—Support Vector Machine, Naïve Bayes, Analisis sentimen, K-Fold Cross Validation