Fisseha Worede
Ethiopian Institute of Agricultural Research, Fogera Rice Research and Training Center, Bahir Dar, Ethiopia

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Developing Blast Disease Resistance of Jasmine Rice by Phenotypic-Genotypic Simultaneous Selection Thanakorn Wangsawang; Tanee Sreewongchai; Prapa Sripichitt; Fisseha Worede
AGRIVITA, Journal of Agricultural Science Vol 40, No 2 (2018): JUNE
Publisher : Faculty of Agriculture University of Brawijaya in collaboration with PERAGI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17503/agrivita.v40i2.1482

Abstract

Breeding for resistant varieties of rice is known to be the most preferable way of controlling blast disease (Pyricularia oryzae). Identification and introduction of resistance genes into elite rice lines has become possible by the use of molecular markers. KD2-1 line is an isogenic line of KDML105 carrying four resistance genes on chromosome 2, 3, 8 and 12 from IR64 variety. The objective of this research was to transfer blast disease resistant genes from KD2-1 line into RD15 variety by using phenotypic and genotypic selections by the aid of markers. In this study, the four resistance genes were transferred from KD2-1 rice line into a blast susceptible rice variety, RD15. The study resulted in the breeding of four elite rice lines with four resistance genes by phenotypic and foreground selection. The genome-wide SSR marker analysis of the lines showed more than 86.5% background genome recovery of RD15. Pathogenicity assays of the four selected lines exhibited a resistant reaction to all 13 isolates, with agronomic and yield performance, and cooking and eating quality characteristics similar to that of RD15. The phenotypic-genotypic (foreground and background) simultaneous selection strategy is very useful to introduce multiple resistance genes in rice as it is a fast and economical way for identification of anticipated recombinant lines with desired genes.
Morphological and Genetic Diversity Study of Upland Rice Varieties under Rain-fed Environment Bantalem Zeleke; Fisseha Worede
Journal of Tropical Crop Science Vol. 9 No. 03 (2022): Journal of Tropical Crop Science
Publisher : Department of Agronomy and Horticulture, IPB University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29244/jtcs.9.03.157-164

Abstract

A field experiment was conducted at Fogera Northwest Amhara region to study the morphological traits to variability in 20 upland rice varieties, consisting of nine NERICA and eleven parents. The data were collected from ten randomly selected plants of each plot (plant height, panicle length, culm length, flag-leaf length, number of spikelet per panicle, number of grains per panicle, number of filled grains per panicle, numbers of fertile tillers per plant, yield per plant) and from plot bases (days to heading, days to maturity, grain-filling period, thousand-seed weight, biomass yield, grain yield, and harvest index). The results of the principal component analysis showed that four components account for 76.7% of the total variation, giving a clear idea of the structure underlying the variables analysed. Cluster analysis using un-weighted Pair Group Method using Arithmetic Average linkage (UWPGMA) classified the twenty varieties into five distinct groups. The maximum inter-cluster distances were; recorded 8.05 between cluster I & V, 6.67 between cluster I and IV; and 5.5 between Cluster I and III, indicating that the possibility of high heterosis if individuals from these clusters are cross bred. The results of the principal component analysis were closely in line with those of the cluster analysis. This study has provided useful information, on evaluation of genetic diversity of rice varieties and will indicate the way, how plant breeders screen out large populations and to develop new breeding protocols for rice improvement.