Arini Pekuwali
Department of Informatics Engineering, Faculty of Science and Engineering, Universitas Kristen Wira Wacana, Jalan R. Suprapto No. 35, Prailiu, Waingapu, Sumba Timur, 87113,

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Optimization of Spaced K-mer Frequency Feature Extraction using Genetic Algorithms for Metagenome Fragment Classification Arini Pekuwali; Wisnu Ananta Kusuma; Agus Buono
Journal of ICT Research and Applications Vol. 12 No. 2 (2018)
Publisher : LPPM ITB

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/itbj.ict.res.appl.2018.12.2.2

Abstract

K-mer frequencies are commonly used in extracting features from metagenome fragments. In spite of this, researchers have found that their use is still inefficient. In this research, a genetic algorithm was employed to find optimally spaced k-mers. These were obtained by generating the possible combinations of match positions and don't care positions (written as *). This approach was adopted from the concept of spaced seeds in PatternHunter. The use of spaced k-mers could reduce the size of the k-mer frequency feature's dimension. To measure the accuracy of the proposed method we used the naïve Bayesian classifier (NBC). The result showed that the chromosome 111111110001, representing spaced k-mer model [111 1111 10001], was the best chromosome, with a higher fitness (85.42) than that of the k-mer frequency feature. Moreover, the proposed approach also reduced the feature extraction time.