Claim Missing Document
Check
Articles

Found 2 Documents
Search

Development of Hybrid Automatic Segmentation Technique of a Single Leaf from Overlapping Leaves Image Jibrin Bala; Habeeb Bello Salau; Ime Jarlath Umoh; Adeiza James Onumanyi; Salawudeen Ahmed Tijani; Basira Yahaya
Journal of ICT Research and Applications Vol. 14 No. 3 (2021)
Publisher : LPPM ITB

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/itbj.ict.res.appl.2021.14.3.4

Abstract

The segmentation of a single leaf from an image with overlapping leaves is an important step towards the realization of effective precision agricultural systems. A popular approach used for this segmentation task is the hybridization of the Chan-Vese model and the Sobel operator CV-SO. This hybridized approach is popular because of its simplicity and effectiveness in segmenting a single leaf of interest from a complex background of overlapping leaves. However, the manual threshold and parameter tuning procedure of the CV-SO algorithm often degrades its detection performance. In this paper, we address this problem by introducing a dynamic iterative model to determine the optimal parameters for the CV-SO algorithm, which we dubbed the Dynamic CV-SO (DCV-SO) algorithm. This is a new hybrid automatic segmentation technique that attempts to improve the detection performance of the original hybrid CV-SO algorithm by reducing its mean error rate. The results obtained via simulation indicate that the proposed method yielded a 1.23% reduction in the mean error rate against the original CV-SO method.
CICM: A Collaborative Integrity Checking Blockchain Consensus Mechanism for Preserving the Originality of Data the Cloud for Forensic Investigation Omoniyi Wale Salami; Muhammad Bashir Abdulrazaq; Emmanuel Adewale Adedokun; Basira Yahaya
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control Vol. 7, No. 1, February 2022
Publisher : Universitas Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/kinetik.v7i1.1378

Abstract

The originality of data is very important for achieving correct results from forensic analysis of data for resolving the issue. Data may be analysed to resolve disputes or review issues by finding trends in the dataset that can give clues to the cause of the issue. Specially designed foolproof protection for data integrity is required for forensic purposes. Collaborative Integrity Checking Mechanism (CICM), for securing the chain-of-custody of data in a blockchain is proposed in this paper. Existing consensus mechanisms are fault-tolerant, allowing a threshold for faults. CICM avoids faults by using a transparent 100% agreement process for validating the originality of data in a blockchain. A group of agreement actors check and record the original status of data at its time of arrival. Acceptance is based on general agreement by all the participants in the consensus process. The solution was tested against practical byzantine fault tolerant (PBFT), Zyzzyva, and hybrid byzantine fault tolerant (hBFT) mechanisms for efficacy to yield correct results and operational performance costs. Binomial distribution was used to examine the CICM efficacy. CICM recorded zero probability of failure while the benchmarks recorded up to 8.44%. Throughput and latency were used to test its operational performance costs. The hBFT recorded the best performance among the benchmarks. CICM achieved 30.61% higher throughput and 21.47% lower latency than hBFT. In the robustness against faults tests, CICM performed better than hBFT with 16.5% higher throughput and 14.93% lower latency than the hBFT in the worst-case fault scenario.