Ramayanty Bulan
Jurusan Teknik Pertanian, Fakultas Pertanian, Universitas Syiah Kuala

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Kajian kapasitas daya pembangkit listrik tenaga air melalui pendekatan debit rencana metode rasional di sub-DAS Lawe Sempali, Provinsi Aceh Devianti Devianti; Ramayanty Bulan; Purwana Satriyo; Dewi Sartika T
Jurnal Pengelolaan Sumberdaya Alam dan Lingkungan (Journal of Natural Resources and Environmental Management) Vol. 10 No. 2 (2020): Jurnal Pengelolaan Sumberdaya Alam dan Lingkungan (JPSL)
Publisher : Graduate School Bogor Agricultural University (SPs IPB)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29244/jpsl.10.2.307-319

Abstract

Nowadays, electricity is a basic human need that must be available. Therefore, efforts to obtain electrical energy from renewable natural resources continue to be explored, especially water energy from watersheds and sub-watersheds. Aceh Province is a relatively widely available area of ​​watersheds and sub-watersheds. This study aims to analyze and categorize the potential of electric power generated by the Lawe Sempali sub-watershed, Aceh province, as a source of hydroelectric power. The method used in this research is the study of literature and field studies. The rainfall analysis of the ten year return period plan was carried out with four approaches, namely (i) normal distribution method (ii) normal log distribution method, (iii) Gumbel distribution method, and (iv) Pearson III log distribution method. Discharge plans that occur are analyzed using the rational method. The categorization of the power capacity of hydroelectric power plants is based on the capacity that can be produced by the sub-watershed. The results of this study were to report that the Lawe Sempali Sub-watershed has the potential to be a source of hydroelectric power generation in the category of micro-hydro and or small-hydro power plants. The capacity of electric power generated with planned discharge in the shortest return period (2 years) is a minimum of 68.21 KW (head 2 m) and a maximum of 3.41 MW (head 100 m).
Pendekatan Jaringan Saraf Tiruan untuk Memperkirakan Kinerja Mesin Pencacah Pelepah Sawit Terintegrasi [Artificial Neural Network Approach for Estimating Performance of Integrated Chopper Machine for Oil Palm Frond] Agustami Sitorus; Ramayanty Bulan
Buletin Palma Vol 20, No 2 (2019): Desember 2019
Publisher : Pusat Penelitian dan Pengembangan Perkebunan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21082/bp.v20n2.2019.127-135

Abstract

The working conditions of an appropriate oil palm chopper are important to be explored in order to improve the machine's performance while working. At present, the selection of working conditions depends on empirical rules and experimental trials. It is conducted because of the complex interaction between the unit of the integrated counter machine (cutting machine unit, compression machine unit, and chopper machine unit) to estimate its performance. Therefore, this study aims to estimate the performance of an integrated palm frond chopper machine through the Artificial Neural Network (ANN) approach. The design of the ANN model was carried out at the Research Center for Appropriate Technology in 2017-2019. Data input is as many as nine operating parameters collected from experimental tests in laboratory conditions using the AE01 type integrated palm fronds chopper machine. The ANN model architecture (input-layer-output) tested is [9-5-1], [9-10-1], and [9-15-1] with the Levenberg – Marquardt algorithm. The results of this study were obtained that the best prediction model is formed by a layered architecture of 10 layers, which results in a smaller prediction error value compared to the others. The model determination coefficient with that layer is 0.99862. Prediction of chopper performance using test data gives a coefficient of determination close to one. The mean squared error (MSE) of the model in each training phase, validation, and testing were 2,69´10-15, 1,56´10-4, 3,38´10-5.ABSTRAKKondisi kerja mesin pencacah pelepah sawit yang tepat penting ditelusuri guna meningkatkan performansi mesin saat bekerja. Saat ini, pemilihan kondisi kerja mesin tergantung pada aturan empiris dan uji coba eksperimental. Hal ini dilakukan karena interaksi yang kompleks antara unit bagian mesin pencacah terintegrasi (unit penggunting, pengempa dan pencacah) untuk memperkirakan kinerjanya. Penelitian ini bertujuan untuk memperkirakan kinerja mesin pencacah pelepah sawit terintegrasi melalui pendekatan Jaringan Saraf Tiruan (JST). Desain model JST dilakukan di Pusat Penelitian Teknologi Tepat Guna pada tahun 2017-2019. Parameter input data adalah sebanyak sembilan parameter operasi yang dikumpulkan dari uji coba eksperimental pada kondisi laboratorium menggunakan mesin pencacah pelepah sawit terintegrasi tipe-AE01. Arsitektur model JST (input-layer-output) yang diujicobakan adalah [9-5-1], [9-10-1], dan [9-15-1] dengan algoritma Levenberg–Marquardt. Hasil penelitian ini diperoleh bahwa model prediksi terbaik dibentuk dengan arsitektur layer sebanyak 10 buah yang menghasilkan nilai galat prediksi lebih kecil dibandingkan dengan yang lainnya. Koefisien determinasi model dengan layer tersebut adalah 0,99862. Prediksi kinerja mesin menggunakan data pengujian memberikan koefisien determinasi mendekati satu. Mean squared error (MSE) dari model pada masing-masing fase pelatihan, validasi dan pengujian adalah 2,69´10-15, 1,56´10-4, 3,38´10-5.